「动态规划」如何计算有多少种上楼梯的方式?

面试题 08.01. 三步问题icon-default.png?t=N7T8https://leetcode.cn/problems/three-steps-problem-lcci/description/三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1e9 + 7。

  1. 输入:n = 3,输出:4,说明:有4种走法,分别是:连续3次,每次上1阶楼梯;先上1阶楼梯,再上2阶楼梯;先上2阶楼梯,再上1阶楼梯;直接上3阶楼梯。
  2. 输入:n = 5,输出:13。

提示:n的范围在[1, 1e6]之间。


我们用动态规划的思想来解决这个问题。

确定状态表示:根据经验和题目要求,我们用dp[i]表示到达i位置时,一共有多少种方法

推导状态转移方程:以i位置最近的一步,来分类讨论。小孩到达i位置的方法数,应该等于上一步的所有方法之和。

  • 上一步上1阶楼梯,方法数为:到达i - 1位置的方法数,即dp[i - 1]。
  • 上一步上2阶楼梯,方法数为:到达i - 2位置的方法数,即dp[i - 2]。
  • 上一步上3阶楼梯,方法数为:到达i - 3位置的方法数,即dp[i - 3]。

综上,得到dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

初始化:根据状态转移方程,当我们计算dp[0],dp[1]和dp[2]时会越界,需要初始化。

  • dp[0]表示到达下标为0的台阶,一共有多少种方法,无意义。
  • dp[1]表示到达下标为1的台阶,一共有多少种方法。只有1种方法,即直接上1阶楼梯,故dp[1] = 1。
  • dp[2]表示到达下标为2的台阶,一共有多少种方法。有2种方法,分别是:连续2次,每次上1阶楼梯;直接上2阶楼梯。故dp[2] = 2。
  • 由于dp[0]无意义,所以我们考虑dp[3]。dp[3]表示到达下标为2的台阶,一共有多少种方法。有4种方法,分别是:连续3次,每次上1阶楼梯;先上1阶楼梯,再上2阶楼梯;先上2阶楼梯,再上1阶楼梯;直接上3阶楼梯。故dp[3] = 4。
  • 由于dp[3] = dp[0] + dp[1] + dp[2],所以dp[0] = dp[3] - dp[1] - dp[2] = 4 - 1 - 2 = 1。

综上所述,dp[0] = dp[1] = 1,dp[2] = 2

填表顺序:根据状态转移方程,dp[i]依赖于dp[i - 1],dp[i - 2]和dp[i - 3],故应该从左往右填表

返回值:根据状态表示,应返回dp[n],表示到达n位置时,一共有多少种方法。

细节问题:由于下标的范围是[0, n],故dp表的规模是1 x (n + 1)。为了防止dp[0],dp[1]和dp[2]越界,需要处理边界情况。由于结果可能很大,为了防止溢出,在每次加法计算之后,都需要对结果模1e9 + 7

class Solution {
public:
    int waysToStep(int n) {
        const int MOD = 1000000007;

        // 处理边界情况
        if (n == 0 || n == 1) {
            return 1;
        }

        if (n == 2) {
            return 2;
        }

        // 创建dp表
        vector<int> dp(n + 1);

        // 初始化
        dp[0] = dp[1] = 1;
        dp[2] = 2;

        // 填表
        for (int i = 3; i <= n; i++) {
            dp[i] = ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;
        }

        // 返回结果
        return dp[n];
    }
};
  • 13
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
好的,针对您的问题,我来讲一下动态规划楼梯问题5个台阶的分析方法。 在动态规划中,我们通常会使用一个数组来存储子问题的解,以便后续的子问题可以直接使用已解决的子问题的解,从而避免重复计算。对于爬楼梯问题,我们可以使用一个一维数组来存储到达每个台阶的不同路径数量。 以下是对于5个台阶的分析方法: 1. 递推法:根据题目可知,到达第n个台阶的方法数为到达第n-1和第n-2个台阶的方法数之和,因此可以使用递推的方式来求解。具体实现可以使用一个一维数组dp来存储到达每个台阶的方法数,从dp[0]开始逐个计算,最终返回dp[n]即可。 2. 递归法:类似于递推法,也是通过递归的方式来求解。递归终止条件为到达第0个台阶和第1个台阶的方法数分别为1和1,递归求解到达n-1和n-2个台阶的方法数,最终返回它们之和即可。 3. 记忆化搜索法:在递归法的基础上,加入了记忆化的思想,即在求解每个子问题时,先查看该子问题是否已经计算过,如果已经计算过,则直接返回已有的解。如果没有计算过,则递归求解,并将结果存储到一个数组中,以便后续的子问题可以直接使用已解决的子问题的解。 4. 斐波那契数列法:利用斐波那契数列的递推公式,即f(n)=f(n-1)+f(n-2),来求解爬楼梯问题。具体实现可以使用两个变量f1和f2来存储f(n-1)和f(n-2)的值,然后依次更新它们的值,最终返回f(n)即可。 5. 矩阵快速幂法:在斐波那契数列法的基础上,利用矩阵快速幂的思想,可以将时间复杂度从O(n)降低到O(logn)。具体实现可以将斐波那契数列的递推公式转化为矩阵的形式,然后使用矩阵快速幂的方式来求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力学习游泳的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值