题目描述:
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
提示:
1 <= n <= 45
题目来源:爬楼梯
思路及部分代码:
1. 分析
通过题目我们可以了解到 f(n) 的方法是上一台阶 f(n-1) ——爬一阶台阶到达 f(n) 加上上两阶台阶到达 f(n) 。所以可得 f(n) = f(n - 1) + f(n-2);
2. dynamic() 直接递归(超时)
此函数重复计算,导致时间不够。
int dynamic(int n){
if(n == 1) return 1;
else if(n == 2) return 2;
else{ //大于阶梯数
//方法有 f(n) = f(n -1) + f(n - 2);
return dynamic(n-1) + dynamic(n-2);
}
}
3. dynamic_1(); 从1到n(通过)
通过从1计算到n并保存之前的f(n-1) 和f(n-2)
int dynamic_1(int i, int a1, int a2,int n){
if(i == 1){
a1 = 0;
a2 = 1;
}
if(i >= n) return a1+a2;
else return dynamic_1(i+1, a2, a1+a2,n);
}
4. dynamic_2(); 数组 (通过)
在了解动态规划时,看见要用数组,就想到了这样,显示这种和dynamic_1();的方法一样,只是将a1,a2;改成了数组而已。(不是动态规划)
int num[3] = {0,0,0};
int dynamic_2(int i, int n){
//更新数据
if(i == 1){
num[0] = 0;
num[1] = 1;
num[2] = num[0] + num[1];
}
else{
num[0] = num[1];
num[1] = num[2];
num[2] = num[0] + num[1];
}
if(i >= n) return num[2];
else return dynamic_2(i+1,n);
}
5. dynamic_3(); 动态规划 (通过)
动态规划算法:(百度)核心思想是将问题分解为若干个子问题,并保存这些子问题的解,以便在解决原始问题时可以重复使用,避免重复计算,从而提高算法的效率。动态规划特别适用于那些具有“最优子结构和重叠子问题”特性的问题,在动态规划中,原问题被分解为相对简单的子问题,这些子问题按顺序求解,并通过保存它们的解来避免重复计算,最终通过组合这些子问题的解来得到原问题的解。
理解:1. 减少重复计算 2.用小问题叠加解决大问题
//动态规划
int dynamic_3(int n){
int dp[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i<n+1;i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
总代码:
int dynamic(int n){
if(n == 1) return 1;
else if(n == 2) return 2;
else{ //大于阶梯数
//方法有 f(n) = f(n -1) + f(n - 2);
return dynamic(n-1) + dynamic(n-2);
}
}
int dynamic_1(int i, int a1, int a2,int n){
if(i == 1){
a1 = 0;
a2 = 1;
}
if(i >= n) return a1+a2;
else return dynamic_1(i+1, a2, a1+a2,n);
}
int num[3] = {0,0,0};
int dynamic_2(int i, int n){
//更新数据
if(i == 1){
num[0] = 0;
num[1] = 1;
num[2] = num[0] + num[1];
}
else{
num[0] = num[1];
num[1] = num[2];
num[2] = num[0] + num[1];
}
if(i >= n) return num[2];
else return dynamic_2(i+1,n);
}
//动态规划
int dynamic_3(int n){
int dp[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i<n+1;i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
int climbStairs(int n) {
//return dynamic(n);
//return dynamic_1(1,0,0,n);
//return dynamic_2(1,n);
return dynamic_3(n);
}
总结:
了解动态规划,减小运行时间,在题目越来越难的情况下,原本的暴力手段已经不足以解决问题,只有通过学习不同的算法才能完成更高难度的题目,以下是本次总结。
不足之处:
-
递归方法 (
dynamic
和dynamic_1
):- 使用递归方式解决问题,但存在效率问题,特别是对于较大的输入值。
- 在
dynamic_1
中,变量传递方式可能不够清晰。
-
递归方法使用全局变量 (
dynamic_2
):- 使用全局变量
num
来存储中间结果,避免了重复计算。 - 全局变量的使用增加了代码的复杂性和维护难度。
- 使用全局变量
-
动态规划方法 (
dynamic_3
):- 使用动态规划来解决问题,避免了递归中的重复计算问题。
- 效率较高,适用于大规模问题的解决。
改进建议:
-
优化效率:
- 对于递归方法,考虑使用记忆化搜索来避免重复计算,提高效率。
-
改进代码结构:
- 改进变量传递方式,使代码更清晰易懂。
- 避免使用全局变量,可以通过参数传递或者结构体来管理状态。
-
代码质量提升:
- 添加适当的注释和更具描述性的命名,以提高代码的可读性。
- 实现错误处理机制,确保代码的健壮性和稳定性。