人工智能在GIS领域的研究与应用综述
摘要
人工智能(AI)、大型语言模型(LLM)、地理信息系统(GIS)以及相关技术的融合正在各行各业彻底改变空间数据分析和决策流程。这一跨学科领域提高了计算能力,使城市规划、环境监测和资源管理中的实时空间建模和知情决策成为可能。本综述强调了人工智能在增强 GIS 功能、促成合成数据生成以及提升非专业用户可访问性方面的作用。交通监测、灾害管理和基础设施开发等应用例证了这些技术的变革性影响。关键挑战包括数据质量、计算需求和伦理考量,这些都需要在数据集成和算法开发方面进行创新。未来的发展方向强调在学术界加强工具构建、优化机器学习算法,并推动包容性的公众参与框架。人工智能和 GIS 的持续整合有望提高系统的效率、可持续性和弹性,并最终促进改善社会成果和推进可持续发展目标的实现。
1 引言
技术的飞速发展催生了利用多学科优势的多个交叉领域。在这些领域中,人工智能(AI)、大型语言模型(LLM)、地理信息系统(GIS)及相关技术的融合在众多行业中脱颖而出,成为一支变革性的力量。这一融合不仅提升了计算能力,而且大幅改进了分析流程,使研究人员和从业者能够应对大型数据集(尤其是具有空间或时空属性的数据集)管理中出现的复杂问题。这些技术在实际场景中的应用凸显了其重要性,从城市规划到环境监测,各个领域均有体现,它们在这些领域促进了知情决策并为紧迫的挑战提供了创新的解决方案。本综述旨在探讨这些技术之间多方面的相互作用及其在各领域的影响,并强调跨学科合作在解决当代问题中的重要性。
1.1 跨学科整合
人工智能(AI)、大型语言模型(LLM)、地理信息系统(GIS)及相关技术的跨学科整合对于提升各领域的计算和分析能力至关重要。这种融合使解决复杂问题成为可能,特别是在管理大型且复杂的数据集(包括空间和时空数据)时。人工智能先进的数据处理能力显著增强了 GIS 的功能,实现了实时空间建模和知情决策流程 [1]。这种集成在智慧城市的交通监控系统等应用中表现得尤为明显,其中通过采用边缘智能(EI)来应对不断增长的城市人口和交通拥堵带来的挑战 [2]。
图 1:章节结构
此外,大型语言模型的重要性日益凸显,因为它们能够生成合成数据,这在数据匮乏构成挑战的领域中特别有用。这些模型提供了先进的语言处理能力,可以简化数据提取并提高数据获取的便利性,尤其是对于地理空间领域技术专长有限的用户而言 [3]。虚拟现实地理信息系统(VRGIS)的发展就是这一转变的例证,它使景观地理空间数据的动态获取成为可能,并能够基于 GIS 数据进行丰富的 3D 可视化分析 [4]。此外,人工智能与数字技术在历史研究中的融合增强了对历史的研究,并填补了现有的知识空白,展示了在教育领域的跨学科应用。
人工智能、LLM、GIS 及相关技术的集成推动了空间数据的分析与解释,并支持针对全球挑战创造创新解决方案。通过实现更高效、更智能的决策流程,这种集成有望改变城市规划、环境管理和基础设施开发等领域。例如,在工程教育中利用机器学习和人工智能可以推进联合国可持续发展目标(SDGs)的实现 [6]。利用 OpenStreetMap (OSM) 数据优化交通预测框架进一步体现了 AI、GIS 与公共服务提供之间的跨学科联系,在兼顾隐私问题的同时满足实时交通估算需求 [7]。
在城市基础设施领域,通过空间和技术表示的整合来探究道路网络的复杂性,从而应对与该基础设施相关的管理挑战 [8]。所提出的提高道路模型精度的方法显示出显著改进,并通过使用实测数据在城市测绘中得到了实际应用 [9]。这种跨学科方法还体现在将社交媒体交流转化为交通基础设施的可操作洞见上,并对这些领域之间相互依存关系的研究进行了分类 [10]。
人工智能、LLM、GIS 及相关技术的集成促进了创新解决方案的开发,以应对全球挑战,实现了更高效、更智能的决策流程。这种跨学科方法对于改造城市规划、环境管理和基础设施开发等行业至关重要,并最终有助于推进可持续、有韧性的社区的发展。此外,地球科学家、数据分析师和 AI 专家的合作凸显了将 AI 与传统地球系统模型相结合的跨领域特性,为更全面的环境解决方案铺平了道路 [11]。社会科学中对空间方法的需求进一步凸显了有必要将 GIS 与 AI 相结合,以丰富该领域的理论和应用研究 [12]。
1.2 组合技术的重要性
人工智能、LLM、GIS 及相关技术的整合显著提升了各领域的决策过程,其原因在于这种整合促进了对复杂数据集的管理和解释。这种融合在城市环境中特别重要,在这些环境中,AI 和 GIS 技术能够从非结构化数据源中精准重建城市景观,从而改善城市规划和发展策略 [13]。此外,GIS 和机器学习(ML)在流线风险评估中的应用显示出更高的预测精度,并提高了环境安全性 [14]。
在公共卫生领域,将 AI、GIS 及相关技术相结合可以加强对流行病的预测和预防,尤其是在人口稠密地区,这是通过模拟城市范围内经空气传播的传染病扩散来实现的 [15]。此外,在危机管理场景(如疏散规划)中,这些技术发挥着关键作用,高效管理地理数据可在紧急情况下支持有效的决策制定 [16]。将 AI 与优化算法相结合进一步提升了模型性能,并为复杂问题提供了全新的解决方案,彰显了这些技术在各种应用中所具有的变革潜力 [17]。
人工智能、区块链和 5G 等新兴技术显著提升了组织的竞争力,这突显出现代产业中技术融合的重要性 [18]。SOLIS 框架通过标准化机器学习应用的部署来体现这一点,它提供了一个灵活的环境以支持多样化的数据源 [19]。此外,还强调了地理学必须改进其方法以有效融入“大数据”,从而能够更真实地解读社会影响 [20]。
将 AI 与地球系统模型(ESM)相结合提高了气候动态的预测能力,并改善了模型输出的可解释性,彰显了将 AI 与传统科学模型相结合的重要意义 [11]。由于全球变暖导致极端天气事件发生频率增加,对极端天气事件实时检测和预测的需求也随之增长,这突出了 AI 和 LLM 在气象应用中的作用 [21]。此外,用于评估和优化放射性材料运输路线选择的基准使得不同运输情景的比较成为可能,并能够评估其在安全、安保和环境因素方面的影响 [22]。
人工智能(AI)、大型语言模型(LLM)、地理信息系统(GIS)及相关技术的整合正推动创新解决方案的发展,这些解决方案能够提升复杂系统中的决策制定和运作效率。通过将 LLM 的广泛领域知识与优化算法相结合,这些技术促进了智能建模和对动态挑战的战略响应。此外,LLM 驱动的自主 GIS 智能体的出现,实现了高效的地理空间数据检索和分析,确保系统在各领域面对不断涌现的机遇和需求时保持适应性和响应能力。这种跨学科方法不仅解决了计算复杂性问题,而且推动了各行业中实际应用的进步 [23, 17, 24, 25]。这一集成凸显了它们在提升各行业决策制定和运作效率方面的关键作用,从而有助于可持续发展和改善社会成果。
1.3 本综述的结构
本综述分为七个主要部分,每个部分都讨论了人工智能、LLM、GIS 及相关技术集成的关键方面。第一部分引言奠定了基础,探讨了这些技术的跨学科整合及其重要性,并强调了它们在城市规划和环境监测等领域的变革潜力。第二部分深入探讨背景和定义,提供对核心概念的基础理解,并阐明这些技术对该领域的相互关系和各自贡献。
第三部分考察了 AI 与 GIS 的集成,重点关注地理数据与 AI 技术的融合、AI 在无人机 (UAV) 和遥感技术中的作用,以及人工智能增强的地理空间应用的示例。第四部分随后探讨了城市规划中的应用,包括对交通和出行、基础设施和资源管理、公众参与和决策,以及利用 AI 和 GIS 分析城市蔓延和社会经济因素的讨论。
第五部分论述了环境监测和资源管理,提供了环境和灾害管理应用、动态脆弱性制图,以及遥感和形态测量分析作用的示例。同时讨论了用于环境监测的 AI 技术以及地理空间技术在资源管理中的应用。
第六部分指出了当前的挑战并探讨了潜在的未来方向和创新。这包括对数据质量和集成、计算和基础设施挑战、伦理、社会和监管挑战,以及技术和特定应用挑战的讨论。该部分还强调了未来的发展方向和创新解决方案。
结论部分有效地综合了本综述中提出的关键见解,强调了将人工智能(AI)、大型语言模型(LLM)、地理信息系统(GIS)及相关技术整合在各个领域的变革潜力。这种整合被定位为推进可持续发展和提升社会成果的关键推动力。通过利用机器学习和多准则决策分析等先进方法,该研究强调了这些技术如何优化土地利用规划、提高数据质量并培育负责任的 AI 实践,最终有助于做出更明智的决策并更好地满足社会需求 [26, 20, 27, 28, 23]。下面的各部分结构如图 1 所示。
2 背景和定义
2.1 核心概念和定义
将人工智能(AI)、大型语言模型(LLM)、地理信息系统(GIS)、机器学习(ML)、空间分析和地理空间技术相结合的这个跨学科领域建立在若干基础概念之上,这些概念对于推进各领域的研究和应用至关重要。AI 作为一种变革性技术,通过模拟人类认知来增强决策制定并优化复杂系统,特别是在地球和气候科学中。它提高了预测准确性和可解释性,促进了对环境系统中复杂相互作用的探索,并有助于制定有效的管理策略 [11]。
LLM 作为 AI 的一个子集,对于自然语言处理和数据生成至关重要。它们提高了数据的可获取性和可用性,这对于各类应用中的知情决策至关重要。这些模型实现了内容生成和情感分析等任务的自动化,提高了模型性能并应对复杂挑战 [17]。
GIS 是一种强大的技术,整合了空间数据和分析,以增强地理理解和教育。它提供了一个收集、分析和可视化空间数据的框架,对城市规划和基础设施管理至关重要。GIS 应用扩展到了社会科学,丰富了地理人口学、犯罪分析、医疗保健和环境公正方面的研究,为社会挑战和政策决策提供了关键洞见 [12]。
ML(机器学习)是 AI 的一个分支,开发算法使计算机能够从数据中学习并进行预测。它在公共政策和应急响应系统中至关重要,可确保在各种条件下稳定运行并有效分配资源。ML 在工程教育中的作用使未来的专业人员能够利用数据驱动的洞见来解决实际问题 [29]。
空间分析研究空间数据以识别模式和地理关系。GIS 在这一过程中发挥关键作用,它支持时空数据分析和动态模拟,对于理解区域现象(例如结合深度学习和数值天气预报技术的高分辨率天气预报)至关重要 [29]。
地理空间技术包括 GIS、遥感和 GPS 等地理测绘与分析工具。将虚拟现实 (VR) 和 3D GIS 相结合增强了空间数据的可视化和交互,能够对城市环境进行动态分析。类似 WebVRGIS 这样的平台将各种数据集叠加在三维地球上,为城市规划和交通管理提供洞见,提高建模精度和决策水平 [30, 31, 32, 4]。通过整合用于停电管理等应用的数据源,这些技术维护着城市基础设施的运行。
这些核心概念支撑着这一跨学科领域,使各领域能够进行更深入的空间数据分析和知情决策。整合 AI、LLM、GIS 及相关技术有望彻底变革城市规划、环境管理和基础设施开发等行业。将高级数据挖掘技术应用于 GIS 数据,通过分析时空特征可为城市蔓延提供洞见。这种方法创建了空间决策支持系统 (SDSS),可以预测城市蔓延并评估各变量之间的关系,帮助决策者促进可持续的城市发展。机器学习和自然语言处理技术增强了对地理空间主题的语义理解,有助于在 GIS 社群内更好地组织知识和导航 [23, 33]。
2.2 技术的相互关系
人工智能、GIS 及相关技术的相互关系形成了一个连贯的框架,增强了各领域的分析和决策能力。AI 与 GIS 的协同作用在城市规划和交通管理中表现得很明显,在这些领域,深度学习和复杂事件处理(CEP)等 AI 技术被用于分析视频流以进行实时交通估计。这种集成推动了城市基础设施分析,对于有效的规划和管理、优化交通流并减少拥堵至关重要 [7]。
时空数据分析的整合(例如车辆位置数据)对于识别电网系统中的故障位置至关重要,从而提高基础设施网络的效率。本地(已知)信息和全局(新)信息之间的动态关系强调了不断发展的数据处理和决策过程,使系统能够针对实时挑战和资源管理进行持续学习和适应 [34, 35]。
将 VR 与 GIS 相结合用于城市大数据管理,示范了增强的空间数据可视化和交互。沉浸式环境为城市动态和挑战提供了更深入的洞见。超维计算架起了 AI 与新兴硬件技术之间的桥梁,凸显了 AI 和向量符号架构在高效数据处理和分析方面的相互关系,为复杂空间问题孕育了创新应用 [4, 36]。
从 G-Maps 无监督文本提取通过实现高效的数据检索和分析来增强 GIS 应用,说明了文本数据处理与地理信息系统的相互关系。提取相关信息为知情决策提供了更丰富的情景理解。在灾害期间,将社交媒体通信与基础设施网络相结合突显了风险沟通在提高基础设施韧性和响应策略方面的作用,从而改善应急响应和社区参与 [37, 10]。
在表示道路网络时面临的挑战(如利益相关者多样性和缺乏统一术语)突显出需要一个整合 AI、GIS 和相关技术的统一框架。这种整合有助于沟通和决策,应对复杂的空间挑战。利益相关者之间的协作提供了综合性的解决方案,以满足城市环境和基础设施系统的各种需求 [8]。
本综述将 LLM 与优化算法的整合分为将 LLM 作为搜索操作符和优化算法生成器两种类别。这凸显了 LLM 在优化系统和流程方面的多功能性,通过简化信息检索和处理,提高了各类应用中的决策能力 [17]。
这些相互关联凸显了 AI、GIS 及相关技术的变革潜力,使更强的分析能力和知情决策成为可能。这种集成在各行业中催生创新:在城市规划中增强空间网络分析和基础设施优化;在环境管理中,通过负责的 AI 研究促进可持续性;在基础设施开发中,地理空间数据洞见为设计和政策实施提供信息 [27, 38]。
2.3 各技术对该领域的贡献
地理信息系统 (GIS)、人工智能 (AI)、机器学习 (ML) 和相关技术极大地推进了跨行业的空间分析、基础设施管理和决策制定。GIS 增强了空间数据的可视化和分析,丰富了教育参与和地理理解。尽管 GIS 在社会科学中的应用不如在自然科学中广泛,但其在地理人口学、犯罪分析和环境公正研究方面具有潜力。高质量的 GIS 软件实践确保了可靠性和性能,以实现有效部署 [12]。
AI(尤其是深度神经网络)在特定应用中优于传统的地球系统模型 (ESM),提高了气候动态的预测准确性和可解释性。AI 在地理空间环境中的作用(例如使用生成对抗网络 (GAN) 自动执行地图样式转换)展示了其对地理空间数据处理的影响。AI 优化了计算效率,如 THMA 系统所示,它自动执行高清地图标注并提高操作效率,说明了 AI 在该领域的变革性影响 [11]。
机器学习 (ML) 作为 AI 的一个子集,开发可扩展的模型来分析大型时空数据集,提升了计算效率和模型准确性。深度学习提高了区域天气预报的准确性,如 YingLong 等模型所示,其性能超越了传统的数值天气预报 (NWP) 模型。一种涵盖现有算法的标准方程提供了一个模块化框架,用于设计新的 ML 方法,从而促进创新解决方案的产生 [29]。
城市规划中的先进技术(以 OSMnx 等工具为例)利用 OpenStreetMap 等平台志愿者贡献的地理信息进行综合的空间分析和城市网络建模。密集的数据处理过程(提取街道节点并定义城市边界)使规划者能够分析城市蔓延并优化基础设施,应对数据开放性和公众参与方面的挑战。这通过增强社区参与和提高城市系统响应能力,有助于实现可持续的城市发展 [39, 40, 38, 41, 33]。
诸如 mapKurator 之类的系统实现了对历史地图扫描件的文本提取自动化,提高了用户获取信息的便利性。这有助于历史研究,并通过为当前数据集提供背景信息丰富了当代空间分析。超维计算和向量符号架构通过克服传统计算框架的局限性来增强 AI,提高了 AI 应用的效率和可扩展性。这种计算范式的演进代表了在处理和分析复杂数据集方面的一个重大飞跃 [27, 33, 20]。
这些贡献凸显了 GIS、AI、ML 及相关技术在促进创新和增强知情决策方面的重要作用。它们影响着多个领域:在城市规划中,GIS 数据分析可预测城市蔓延并支持可持续发展;在环境管理中,受益于 AI 驱动的生态影响洞见;在基础设施开发中,ML 算法优化资源分配和项目规划。通过整合多学科方法并利用大型数据集,这些技术正在改变各行业应对挑战和实施解决方案的方式。它们的持续整合和发展提升了应对复杂挑战和改善社会成果的能力。
3 AI 与 GIS 的集成
类别 | 特征 | 方法 |
地理数据和人工智能技术 | 数据提取与优化 空间和时间分析 | LLM-Find[25], UTE-GM[37] IPRM[9], GCOL[34] |
无人机和遥感技术中的 AI | 无人机操作中的 AI 3D 城市表征 | TCF[42], WAPP[43] GIS-3DCG[44], WVGIS[4] |
人工智能增强的地理空间应用 | 数据集成与分析 语义技术 视觉风格与迁移 | ODPS[45], BS[13] SSL[46], WiDOP[47] MSTF[48] |
表 1:本表全面概述了各种应用于地理数据处理、无人机操作和地理空间应用的 AI 技术。它根据具体特征和应用对方法进行了分类,突出展示了用于增强空间数据分析和运行效率的多样化方法。所列方法展示了 AI 与 GIS、无人机技术和地理空间应用的集成,展现了它们在多个领域的变革性影响。
AI 与 GIS 的融合标志着空间数据分析领域的一个重要进展,催生了能在各个领域提升决策的创新方法。如图 2 所示,这种集成突出体现了几个关键领域,例如地理数据处理技术、AI 在无人机和遥感技术中的应用,以及 AI 增强的地理空间应用。表 4 提供了一个关于地理数据处理、无人机操作和地理空间应用中所用 AI 技术的详细分类,展示了在这些领域实现的集成和进展。
该图展示了 AI 在空间数据分析、城市基础设施管理、灾害管理和创新地理空间应用方面的变革性影响。它强调了这种协同作用如何不仅简化数据处理,而且使利益相关者能够从复杂的空间数据集中提取有意义的见解。这种集成的基础要素对于理解地理数据和 AI 技术如何融合以改进各类应用中的空间分析和运行效率至关重要。
3.1 地理数据与 AI 技术
将地理数据与 AI 技术相结合彻底革新了空间数据分析,为各行业的决策制定提供了更强大的工具。诸如利用模糊 C-均值聚类和边缘检测进行无监督文本提取等技术优化了地理信息处理 [37]。这些复杂的方法能够更有效地提取空间数据,从而提高 GIS 的准确性和效率。其影响不仅限于数据处理,还改变了空间数据在实际应用中的使用方式。
在城市基础设施管理中,通过优化相连道路段和宽度来构建可靠的道路模型,并利用街道观测来增强道路网络表示,这对于城市规划和交通管理至关重要 [9]。AI 驱动的改进提供了对城市交通模式和基础设施需求的细致理解,从而改进了资源配置和规划策略。随着城市不断发展,精确建模变得日益重要,这突显出将 AI 与地理数据相结合的创新方法的必要性。
地理聚类技术分析地理数据,提高了配电网系统中故障位置的识别能力,这凸显了将时空数据分析与 AI 相结合以提高运行效率的重要性 [34]。AI 算法识别模式和异常,使公用事业能够快速响应故障,最大限度减少停机时间并提高服务可靠性。将 AI 集成到地理数据分析中增强了运行能力并促进了主动的基础设施管理。
3.2 无人机和遥感技术中的 AI
将 AI 集成到无人机 (UAV) 和遥感技术中显著增强了这些系统的能力,使其能够在各类应用中高效收集和分析数据。表 2 对不同的 AI 与 UAV 和遥感技术集成方法进行了对比分析,详细说明了它们的应用领域以及在运行效率方面带来的提升。交通管制框架 (TCF) 就是在无人机系统 (UAS) 交通管理策略优化的仿真环境中运用了 AI 和 ML 的例子 [42]。该框架突出了 AI 在改进无人机运行方面的潜力。
表 2:AI 在无人机和遥感技术中的集成比较:本表概述了多种在无人机和遥感中纳入 AI 的方法,重点介绍了它们的应用领域以及所实现的运行效率。这些方法包括用于交通管理的交通管制框架 (TCF)、用于应急管理的 AMF-UAV,以及用于城市环境优化导航的 WAPP。
方法名称 | AI 集成 | 应用领域 | 运行效率 |
TCF[42] | AI 与 ML | 交通管理 | 增强自主导航 |
AMF-UAV[50] | AI 支持 | 应急管理 | 快速数据采集 |
WAPP[43] | 城市环境 | 优化的导航 |
在洪灾管理中,装备 AI 的无人机为救援指挥官提供及时准确的信息,加强了紧急情况下的态势感知和决策 [50]。无人机快速评估受影响地区,将关键数据传递给应急服务部门,改进了响应时间和资源分配,最终挽救生命并将损失降至最低。
低空无人机自主导航展示了 AI 在优化飞行路径方面的应用,它通过考虑土地使用类别的加权最短路径计算和动态避障来实现 [43]。AI 提高了导航效率和安全性,这对于复杂城市环境中的各种无人机应用至关重要。
3.3 AI 增强的地理空间应用
方法名称 | 集成技术 | 应用领域 | 效率提升 |
GIS-3DCG[44] | GIS 和 3DCG | 城市规划 | 减少处理时间 |
ODPS[45] | MapReduce 框架 | 城市研究 | 减少处理时间 |
SSL[46] | 数据融合流程 | 城市规划 | 提高准确性 |
BS[13] | 融合 GIS 数据 | 城市重建算法 | 减少处理时间 |
WiDOP[47] | 语义网技术 | 设施模型创建 | 减少时间 |
MSTF[48] | GAN 风格迁移 | 网络制图 | 自动化样式迁移 |
WVGIS[4] | 叠加多类型数据 | 城市管理 | 提升可访问性 |
表 3:本表总结了多种 AI 增强的地理空间方法,突出其集成技术、应用领域和效率提升。列出的方法展示了 AI 在城市规划、城市研究和网络制图中的多样应用,强调了在处理时间、准确性和可访问性方面的改进。这些进展说明了 AI 对地理空间技术的变革性影响,有助于复杂的空间数据分析和决策制定。
AI 与 GIS 的集成催生了高级地理空间应用,增强了各领域的空间数据分析和决策制定。这种融合使研究人员能够运用复杂的建模和分析技术来解决复杂的空间问题。自动化屋顶损坏评估利用 AI 创建精确的 3D 城市模型,减少了城市规划和灾害管理所需的时间和精力 [44]。AI 提高了灾后应对策略的效率和有效性。
可扩展的分析技术验证了跨城市的城市规模定律,展示了 AI 增强的地理空间应用在城市研究中的潜力 [45]。理解城市生长原理使基于数据的可持续城市化决策成为可能。这些洞见为应对住房密度、交通网络和环境影响的政策制定提供了信息依据。
语义跨视角匹配利用语义线索提高了定位准确性,提升了地理空间应用的精度 [46]。改进的位置服务可靠性提升了导航和地图应用的用户体验,这在城市环境中至关重要。
BigSUR 系统简化了城市数据融合过程,减少了对照片数据的依赖,并优化了建筑特征表示,以实现高质量的城市建模 [13]。精简的数据集成创建了综合的城市模型,为有效的规划和管理提供支持。
StaR 地图支持复杂查询并增强空间推理,展示了 AI 在智能交通系统中的适用性 [55]。AI 集成通过高效的路径规划、交通预测和资源分配改进了交通管理。实时空间数据分析使交通规划者能够快速应对不断变化的情况,提高了服务水平和用户满意度。
基于知识检测的自动语义 VRML 模型生成说明了 AI 高效处理 3D 点云的能力,提升了地理空间数据处理 [47]。精确的空间表示对于城市建模和环境监测应用至关重要。AI 集成提高了空间表示的准确性并减少了数据处理时间。
GAN 自动化多尺度地图样式设计,通过高效且美观的地图设计凸显了 AI 在地理空间应用中的变革性影响 [48]。WebVRGIS 平台通过改进复杂城市数据的可视化来增强决策制定和资源管理,再次强调了 AI 在地理空间技术中的重要性 [4]。
AI 增强的地理空间应用推动了各行业的创新并完善了决策制定过程。高级 GIS 数据分析通过挖掘与人口统计和人口增长相关的时空特征来预测城市蔓延,帮助实现可持续发展。空间网络分析的集成实现了基础设施优化和对经济、社会动态的理解,解决了公共卫生问题,尤其是在后 COVID-19 时代。应用于地理信息系统的机器学习技术提取地理空间主题之间的语义关系,增强了知识传播并支持地理空间技术的演进。
总体而言,这些进展凸显了 AI 在提升城市规划、交通运输和环境管理领域决策效率和响应能力方面的关键作用 [23, 33, 38]。AI 和 GIS 持续的集成进步拓展了地理空间技术的潜力,有助于在复杂空间环境中实现高效且知情的决策。表 3 全面概述了 AI 增强的地理空间方法,展示了它们的集成技术、应用领域及其带来的效率提升。
要素 | 地理数据与 AI 技术 | 无人机和遥感技术中的 AI 人工智能增强的地理空间应用 | |
应用领域 增强方法 运作效益 | 城市规划 模糊 C-均值聚类 提高 GIS 准确性 | 灾害管理 配备 AI 的无人机 快速数据采集 | 城市建模 自动化屋顶评估 高效规划 |
表 4:本表对三个关键领域中应用的 AI 技术进行了比较分析,这三个领域分别是地理数据处理、无人机和遥感技术,以及地理空间应用。它突出显示了每个领域相关的具体应用领域、增强方法和运作效益。该表强调了 AI 集成在提高 GIS 准确性、快速数据采集和高效城市规划方面的变革性影响。 |
4 城市规划中的应用
人工智能 (AI) 与地理信息系统 (GIS) 的融合对于使城市规划现代化至关重要,特别是在应对交通和出行挑战方面。随着城市区域的扩张,高效的交通系统变得至关重要。本节深入探讨 AI 和 GIS 在优化城市基础设施和出行方面的应用,强调它们在预测分析和知情决策中的作用。通过简化流程,这些技术有助于打造可持续且宜居的城市环境,这对于解决拥堵、污染和资源管理问题至关重要。
4.1 交通和出行
AI 和 GIS 的集成通过增强数据管理和分析能力彻底变革了交通和出行领域。这种协同通过高级数据可视化和实时集成改善了交通系统。基于 GIS 的工具促进了地震脆弱性评估,协助城市规划和灾害管理 [56]。对大型数据集的分析使城市规划者能够做出数据驱动的决策,大大提升了城市交通和基础设施规划。
在城市环境中,AI 和 GIS 技术优化了停车管理,通过提高资源分配效率来减少交通拥堵和环境影响 [57]。PyLUSAT 等开源 Python 工具包在 GIS 应用中提供了计算效率,为城市规划者提供了用于动态交通分析的有效工具 [58]。递归的城市空间细分有助于理解城市结构动态,支持战略性的交通基础设施发展 [51]。AI 增强的路径规划系统(如科伦坡的系统)通过优化拥堵情况下的导航,改善了通勤体验和交通资源分配 [59]。
4.2 基础设施和资源管理
AI 和 GIS 的集成显著推进了基础设施和资源管理,提供了创新的城市规划和交通解决方案。可靠的土地适宜性评估对于资源分配至关重要,通过战略顺序权重得到了增强,从而优化土地利用并支持可持续发展 [26]。这种战略方法对于城市化进程至关重要。
在交通领域,Instamaps 算法利用实时数据动态调整信号灯时间,改善了交通流并减少拥堵 [63]。AI 的实时交通分析支持自适应交通管理,提高了网络效率。交通估计框架 (TEF) 通过优化交通流和减少延误增强了基础设施管理 [64]。准确的交通预测使基础设施投资和维护决策更具依据。
KaRRi 算法优化了拼车上下车地点,提高了交通网络效率和资源分配 [65]。这一优化有利于拼车服务,减少了城市拥堵并改善了空气质量。
GIS 应用可快速收集社会经济数据,增强了决策和治理能力,这对基础设施规划至关重要 [66]。用于交通数据管理的云服务平台提高了实时决策和运营效率 [31]。OASIS 系统提高了人行道制图的效率和准确性,增强了城市出行和无障碍性 [67]。
在农业中,AI 和 GIS 通过评估可耕种土地来支持可持续实践和粮食安全 [68]。这些进展展示了 AI 和 GIS 在基础设施和资源管理方面的变革性影响,推动了各行业的创新并改进了决策。机器学习和网络科学等先进技术提高了基础设施的效率、可持续性和韧性,与全球可持续发展目标保持一致,并带来了有效的社会成果 [69, 6, 70]。
4.3 公共参与和决策制定
AI 和 GIS 的集成显著增强了城市规划和资源管理中的公众参与和决策制定。通过实时公众反馈监测和面向社区的策略定制,这种集成实现了包容且透明的决策制定 [71]。协作式 3D GIS 平台吸引了利益相关者,允许对拟议开发项目进行可视化和评估,营造了参与式环境 [72]。对复杂数据的无障碍可视化使市民能够为城市发展讨论做出贡献。
公共 AI 系统的可质疑性通过确保透明度和审查,提高了问责制和市民参与度,提升了 AI 驱动举措的合法性 [73]。这种参与培养了社区主人翁意识,这对于成功的城市规划至关重要。
AI 和 GIS 技术支持上下文感知系统,以改进基础设施和资源管理。Instamaps 算法根据实时数据调整交通信号,通过提供响应迅速的城市服务增强了公众参与 [63]。将多样的数据源集成到 GIS 平台中提高了决策工具的可用性和实时性能,使有效的公众参与和协作成为可能 [31]。
AI 和 GIS 的进步凸显了它们在加强公众参与和决策制定方面的作用。这些技术通过实现数据驱动的方法来推动创新并改进治理。将 AI 与街景图像等大数据相结合,可进行准确的社区健康评估,为干预措施提供依据。负责任的 AI (RAI) 研究强调将研究成果转化为实际应用,提高 AI 系统的可信度并有助于更好的治理和社会福祉 [74, 27]。持续的技术整合有望在决策制定中提高包容性、透明度和响应速度,促进可持续和公平的城市发展。
4.4 城市蔓延和社会经济分析
AI 和 GIS 的集成推进了城市蔓延和社会经济分析,提供了对城市发展动态的洞见。利用 GIS 数据进行 AI 增强建模解决了城市蔓延的复杂性,能够准确预测与人相关的现象和规划效率低下的问题 [75]。这种方法识别了增长模式和社会经济影响,这对于知情的城市规划至关重要。理解这些动态对于制定缓解蔓延影响(如拥堵和环境恶化)的策略至关重要。
一种新颖的城市蔓延度量方法利用街道节点和基于 OpenStreetMap 的边界,提供了一个全面的空间动态框架 [39]。该方法提高了规划者评估蔓延程度和特征的能力,支持可持续增长策略。准确的蔓延测度有助于在紧凑型城市形态中进行资源分配和政策实施。
递归的城市空间细分揭示了潜在的空间秩序,展示了遵循齐夫定律的城市内部层级 [51]。这一见解有助于理解城市结构动态及其社会经济含义,并支持战略规划和管理。认识到这些模式可以让规划者设计促进社会互动和经济活动的空间,增强社区福祉。
空间决策支持系统 (SDSS) 是 AI 和 GIS 在预测城市蔓延和社会经济变量估计方面集成的典型例子。这些系统分析增长模式和影响,有助于有效的规划和资源分配 [33]。SDSS 支持情景模拟、结果评估和与可持续性相协调的知情决策。
协作式 3D GIS 平台增强了决策制定中的公众参与,允许利益相关者参与开发项目和社会经济影响评估 [72]。这种参与式方法确保了包容且灵活的规划,有助于公平和可持续的城市发展。公众参与培养了信任并确保多元化视角,从而带来整体性的规划解决方案。
AI 和 GIS 在加强城市蔓延和社会经济分析方面发挥了重要作用。数据挖掘和时空分析预测蔓延模式,并了解人口增长和人口统计等变量的相互关系。这些知识为 SDSS 的开发提供了信息,帮助规划者识别问题并制定可持续的蔓延解决方案。空间网络分析提供了对基础设施、经济指标和公共健康的洞见,应对了数据隐私和公民参与方面的挑战。这些创新改善了决策制定并促进了可持续的城市发展 [33, 38]。持续的技术整合有望提高城市环境的效率、可持续性和弹性,并促进改善社会成果。
5 环境监测和资源管理
在环境监测和资源管理领域,技术与策略之间的相互作用对于应对当代挑战至关重要。接下来,我们将深入探讨这些技术的具体应用,下面的小节将考察 AI 和 GIS 在环境和灾害管理中的整合。这一探讨强调了提升我们监测、响应和减缓环境危机影响能力的创新方法和框架,从而为更深入地理解环境管理的动态格局奠定基础。
5.1 环境和灾害管理
在环境和灾害管理中整合 AI 和 GIS 大大增强了对紧急情况的监测、响应和缓解能力。AI 和 GIS 技术在改进灾害响应策略方面发挥了关键作用,其在蚊虫种群的实时监测中的应用就是明证,这对公共卫生和环境管理具有深远影响。MosquitoFusion 基准就是一个显著的例子,它促进了蚊虫栖息地的检测并有助于疾病预防工作 [76]。
在灾害管理领域,实时监测出租车出行动向的能力为城市韧性和应急响应策略提供了关键洞见。这一方法能够让我们评估危机期间的交通动态,加强城市机动性和资源分配 [77]。此外,所提出的提高救助患者效率的系统强调了 AI 和 GIS 在紧急情况下提供及时医疗援助方面的作用,从而改善了环境监测和灾害响应的效果 [78]。
在石油勘探中应用空间建模技术是 AI 和 GIS 在环境管理中整合的一个例证,它使我们能够有效识别含碳氢化合物区,并降低与勘探活动相关的环境风险 [79]。此外,在疏散规划中使用 GIS 对加强灾害管理策略至关重要,因为它有助于制定高效的疏散路线并在危机中提高公共安全 [16]。
“地方流动性”的概念为加强灾害管理策略提供了一种新框架,特别是在应对如阿塔巴德湖灾害和 COVID-19 大流行等事件时。该方法强调了将空间和社会维度相结合在灾害响应中的重要性,从而提高了管理策略的适应性和有效性 [62]。
在环境监测中,可扩展的烧毁区域制图方法解决了以往方法的局限性——以往方法常依赖低分辨率卫星影像和基于规则的算法,难以有效检测小型火灾。这些方法显著改进了野火监测,将其环境、经济和社会影响降至最低 [80]。机器学习在环境工程中的整合通过各类案例得到说明,包括空气质量检测、路边垃圾检测和野生动物相机诱捕检测,展示了 AI 和 GIS 技术的变革性影响 [6]。
所提出的无障碍 GeoQA 门户框架提高了非专业用户获取和使用地理空间数据的便利性,这在环境和灾害管理应用中至关重要 [81]。此外,社交媒体作为灾害期间实时公众风险沟通工具的效力突显了地理空间技术在提高公众意识和响应策略方面的作用 [10]。
5.2 动态脆弱性制图
动态脆弱性制图是资源管理中的一项关键工具,尤其在应急响应和灾害管理中。该方法利用 GIS 根据实时道路交通状况可视化疏散难度,从而提高应急规划和响应策略的有效性 [82]。动态评估脆弱性的能力对于识别潜在瓶颈和优化疏散路线至关重要,以确保在危机期间高效分配资源。
动态脆弱性制图的主要挑战之一是应急避难所分布不均且容量不足,这会大大限制其在紧急情况下有效服务受灾人群的能力 [83]。应对这些挑战需要全面了解空间动态,并整合 GIS 工具来评估避难所的位置和容量,从而最终改善应急准备和响应工作。
动态脆弱性制图的应用通过 1990 年希腊斯佩察斯岛野火和 2021 年埃维亚岛野火等案例得到了进一步说明。这些案例利用历史数据和 GIS 工具来确定模型参数,展示了动态制图在评估和管理野火风险方面的作用 [84]。通过结合概率模型和历史数据,动态脆弱性制图为潜在灾害影响提供了有价值的洞见,有助于在灾害易发地区做出更明智的决策和资源分配。
这些进展通过在应急准备和响应中加强尖端信息技术的整合,凸显了动态脆弱性制图对资源管理的重大影响。通过为利益相关者及时提供全面的地理空间数据(如洪水风险地点、道路网络状况和淹没地图),这些工具促进了关键信息的快速分析和传播。这反过来推动了决策过程的创新,使在紧急情况下进行更有效的疏散路线规划和资源分配成为可能,并最终提高了社区在灾害管理情景中的韧性和响应效果 [85, 62, 86]。持续整合 GIS 和动态制图技术有望提高资源管理策略的效率、可持续性和弹性,并最终改善社会成果。
5.3 遥感和形态测量分析
遥感和形态测量分析在 GIS 中发挥着关键作用,使各种应用能够提取和解释空间数据。从遥感影像中提取建筑物的多边形表示是一个关键过程,它提高了 GIS 数据库的准确性,有助于城市规划和基础设施管理 [87]。该方法满足了对精确空间数据的需求,而精确空间数据对于城市发展情境下的知情决策至关重要。
在语义分割任务中应用卷积神经网络 (CNN),如 U-Net 架构,在从卫星影像识别烧毁区域方面尤其值得关注。这种方法显著改进了野火影响的检测和制图,为环境监测和资源管理提供了宝贵洞见 [80]。通过利用先进的图像处理技术,遥感技术促进了对大尺度环境现象的分析,有助于制定更有效的灾害响应策略。
形态测量分析通过对地形地貌进行定量评估,补充了遥感技术,提供了对区域地貌特征的详细洞见。这种分析对于全面理解景观的空间动态及其时间演化至关重要,因为它有助于在环境管理和土地利用规划中做出知情决策。通过采用基于 GIS 的多准则决策分析等先进方法,该方法能够评估相互竞争的土地利用需求,并识别适合城市发展的区域,同时保护重要的生态系统服务。此外,它利用大数据和空间网络洞见来加强规划策略,应对诸如城市蔓延和公共健康影响等挑战,最终促进可持续发展和有效的资源管理 [26, 38, 88, 89, 33]。将遥感和形态测量分析相结合提高了监测和评估自然灾害(如滑坡和洪水)的能力,从而改进了减灾工作。
这些进展凸显了遥感和形态测量分析在地理空间应用中的变革性影响,推动了各个领域的创新并增强了决策流程。正在将机器学习、人工智能和其他先进技术持续整合到环境监测和管理策略中,有望显著提高其效率、可持续性和韧性。通过自动化数据收集和分析,这些创新不仅简化了流程,还提高了环境评估的准确性。这一技术进步支持了企业温室气体减排目标的有效实施,并促进了气候变化适应和缓解方面的创新。最终,这些改进有望带来更有利的社会结果,与全球可持续发展目标保持一致,并提高应对环境挑战的能力 [90, 91, 6]。
5.4 环境监测中的 AI 技术
在环境监测中应用 AI 技术显著提升了处理大型数据集和优化决策流程的能力。诸如平滑方差分析 (SANOVA) 等 AI 方法被用于模拟环境监测和疾病绘图中的空间效应,提供了稳健的分析框架,提高了空间数据解释的准确性 [92]。这些技术促进了复杂空间数据集的整合,使对环境现象的监测和管理更加精确。
使用实时 GIS 分析对于提高环境监测和资源管理的数据准确性至关重要 [68]。这种方法允许对环境状况进行动态评估,支持及时的决策过程,这对于有效管理自然资源至关重要。在自动驾驶领域,THMA 系统所采用的 AI 技术实现了高清 (HD) 地图的自动标注,这对于准确的环境描述和监测至关重要 [93]。
以 WiDOP 框架为例,AI 驱动的 3D 点云数据处理进展利用语义知识改进了目标检测和标注,从而增强了环境监测能力 [47]。LOOP-PE 模型进一步展示了 AI 在处理动态传感器数据以实现实时环境监测方面的应用,强调了 AI 在促进高效数据管理和分析方面的潜力 [94]。
边缘智能 (EI) 技术(如 EI-TMS)通过本地处理数据来降低延迟和带宽消耗,这对于实时环境监测应用至关重要 [2]。这种本地处理能力使环境监测系统更加灵敏,增强了其适应变化条件的能力。
在烧毁区域制图方面,利用在 Landsat 影像上训练的 U-Net 模型变体的 AI 技术实现了制图过程的自动化和优化,显著提高了准确性和效率 [80]。这些模型有助于快速评估野火影响,为更有效的环境监测和灾害响应策略做出了贡献。
AI 技术在气象应用中也起着关键作用。在这些应用中,集成视觉-语言模型来评估事件检测和空间定位的正确性,以反映环境预报的实际需求 [21]。WebVRGIS 平台是 AI 集成的一个范例,它通过交互式 3D 界面提供了全面的城市数据视图,从而便于空间分析和决策制定 [4]。
这些进展凸显了 AI 技术在环境监测中的变革潜力,推动了各领域的创新并改进了决策过程。将 AI 技术整合到环境监测策略中势必显著提高效率、可持续性和韧性。这样的进步得益于诸如企业减碳指标提取 (CAI) 模型等创新方法,该模型实现了从公共披露中自动提取和验证企业温室气体排放指标。此外,机器学习工具正被应用于各个工程学科,以简化土壤和水质测试等流程,从而提高数据准确性并减少人工劳动。
因此,这些 AI 驱动的方法不仅优化了环境数据收集,还通过与联合国可持续发展目标 (SDGs) 保持一致并促进负责任的 AI 研究转化为实际创新,促成了更明智的决策和更好的社会成果 [27, 6, 91]。
图 3:环境监测中的 AI 技术示例
如图 3 所示,在环境监测和资源管理领域,人们越来越多地利用 AI 技术来提高数据分析和决策过程的准确性和效率。所给出的示例说明了该应用的两个关键方面。首先,“研究方法流程图”为开展环境监测研究提供了结构化的方法,强调了诸如确定研究框架、明确研究问题和做出方法选择等关键阶段。这个系统化框架对于确保 AI 驱动的研究建立在明确的目标和明确定义的流程上至关重要。其次,“不同时间尺度下的地面真实值 (GT) 与预测影像比较”展示了 AI 在分析环境数据方面的实际应用。通过比较各个时间尺度下的 GT 影像和 AI 预测影像,研究人员可以评估 AI 模型在实时环境监测场景中的准确性和可靠性。这两个示例共同强调了 AI 在深化我们对环境资源的理解和管理方面的变革潜力 [49, 95]。
5.5 资源管理中的地理空间技术
地理空间技术通过提供复杂的空间分析和决策支持工具,在资源管理中发挥着关键作用。将 GIS 与神经网络相结合标志着在建模森林砍伐等环境现象方面的重要进展。该方法允许纳入影响森林砍伐的多个因素,创建了一个能够弥补先前研究局限性的稳健模型 [96]。通过利用 GIS 的功能,资源管理者可以更好地理解和预测森林砍伐模式,从而制定更有效的保护策略和可持续的资源管理。
在应急管理背景下,人们开发了一种多准则决策过程,利用空间分析技术评估武汉的应急避难所。这一方法提供了一个全面的框架来评估避难所的位置和容量,确保在危机期间资源得到高效分配 [83]。动态评估和优化避难所资源的能力对于提高应急准备和响应工作至关重要,尤其是在空间动态复杂的城市环境中。
这些进展通过实现对大型且复杂数据集的分析、促进实时决策制定以及支持可持续的城市规划,突出了地理空间技术对资源管理的重大影响。例如,将数据挖掘算法与 GIS 相结合可以预测城市蔓延,而计算笔记本则提高了空间分析的可访问性和可重复性。此外,对动态地理空间现象的持续研究旨在开发高水平的分析能力,以改善我们对空间关系的理解,并在各种环境中改进决策过程 [89, 33, 97, 88]。持续将 GIS 与先进的计算模型整合有望提高资源管理策略的效率、可持续性和弹性,并最终带来更好的社会成果。
6 挑战和未来方向
解决 GIS 与 AI 集成中的挑战对于推进这些技术至关重要。以下小节探讨了关键挑战,重点关注数据质量和集成、计算和基础设施问题,以及伦理、社会和监管方面的关注。理解这些挑战对于确保 GIS 和 AI 应用的成功和可持续性至关重要。
6.1 数据质量和集成
数据质量和集成在部署 GIS 和相关技术时提出了重大的挑战,影响着它们在各类应用中的有效性。数据来源的复杂性和异构性常常超出当前方法的能力,导致难以适应现代数据生态系统。在预测关键转变时,高维数据和复杂动态需要采用创新的方法 [98]。糟糕的数据质量可能导致错误的结论,削弱 GIS 和 AI 系统的价值。面临的挑战包括集成无序、分布式和异步的数据集合,而传统模型往往缺乏鲁棒性 [34]。在模型选择中平衡准确性和计算成本进一步使数据质量和集成变得复杂,尤其是在推荐系统的机器学习算法中 [17]。
对来自现代激光扫描技术的大型数据集进行处理凸显出需要自动化方法来管理巨大的图像规模并整合文本识别结果 [37]。现有方法缺乏时间性,这突出了需要加强数据集成策略以管理时空数据 [99]。随着技术的发展,整合实时数据流变得至关重要,这需要硬件和软件解决方案的进步。隐私风险(尤其是摄像头视频)以及与摄像头部署和不同条件下数据质量相关的挑战使数据集成工作复杂化 [7]。由于依赖低分辨率图像,这些问题进一步恶化,导致烧毁区域制图中的识别错误 [80]。
地球系统建模由于神经网络缺乏真实过程知识而面临挑战,在复杂场景中的可靠性受到影响 [11]。传统数值天气预报 (NWP) 模型对边界条件的依赖可能限制像 YingLong 这样的先进模型,这突显了改进数据集成技术的必要性 [29]。推进数据收集、处理和集成的方法对于管理 GIS 中大型、异构数据集至关重要,有助于培养融合计算和定性视角的协作方法 [100, 20, 5, 88, 89]。
6.2 计算和基础设施挑战
将 GIS 与 AI 和 ML 相结合带来了重大的计算和基础设施挑战。诸如交通估算之类的实时应用需要大量的计算资源和复杂的算法,加剧了计算需求并引发数据隐私担忧 [30]。联邦学习框架在适应动态资源限制方面面临计算挑战,需要针对不同环境的高效模型 [101]。遥感中植被的语义分割因训练数据不足而受到影响,导致类别预测的精细度下降 [102]。创新的数据增强和迁移学习方法可以提高模型性能。
技术基础设施挑战以及数据隐私和伦理考量使生成模型在企业环境中的实施复杂化 [103]。人口特征与交通需求之间交互的复杂性,加之缺乏综合数据集,为交通系统中的时空分析带来了挑战 [104]。应对这些挑战需要在数据收集技术和创新分析框架方面取得进展。
缺乏专门的 GIS 教育项目以及现有专业 GIS 软件的高度复杂性限制了其可及性,阻碍了其广泛采用 [105]。数据准确性和传感器局限性(尤其在极端条件下)影响了智能系统的可靠性,这强调了稳健的数据收集和处理方法的重要性 [106]。开发用户友好的界面和教育资源可以提高 GIS 技术的可及性,促进更广泛的采用和创新应用。
在城市环境中,输入观测的质量和密度差异显著,这带来了计算和基础设施挑战 [9]。在算法开发、数据集成和资源管理方面取得进展,对于有效利用 AI 和 ML 的强大能力至关重要,从而增强决策过程并改善各行业的成果。
6.3 伦理、社会和监管挑战
AI、GIS 及相关技术的集成带来了复杂的伦理、社会和监管挑战。一个核心问题是公共 AI 系统的可质疑性,通过透明度和问责制确保对人权和民主价值的尊重 [73]。深度学习在贫民窟测绘等敏感领域的应用引发了关于隐私和知情同意的重要伦理考虑 [107]。企业实体和众包数据参与 AI 研究使伦理考量更加复杂,需要有全面的框架来适应快速变化的环境 [108]。
LLM 的黑箱特性在问责制和减轻错误信息风险方面带来了挑战 [109]。为增加因果可解释性所做的努力凸显了让 AI 系统可解释方面的巨大挑战 [110]。在生物监测中,伦理、社会和监管挑战尤为突出,需要谨慎考虑数据使用和保护框架 [111]。从一开始就将伦理考虑纳入其中对于培育负责任的 AI 和 GIS 创新至关重要 [112]。
整合伦理、法律框架、社会科学视角和技术创新的多学科方法对于应对 LLM 和其他 AI 系统的挑战至关重要。这种协作努力将提高透明度,减少偏见,并确保伦理考量引导 AI 的进步 [112, 27, 109, 20]。
6.4 技术和应用特定挑战
将 GIS 与 AI 相结合带来了若干技术和特定应用方面的挑战。对高分辨率 GIS 数据的依赖限制了隔离模型在现实世界中的适用性,需要采用创新方法利用低分辨率数据而不降低准确性 [113]。当前 GIS 技术通常只支持基于文本的手册,这凸显了需要通用的数据处理框架 [25]。
在社交媒体分析中,准确捕捉推文上下文具有挑战性,需要整合多样数据源的复杂分析模型 [114]。废物管理需要优化路线和资源分配,这要求使用先进的 AI 算法以提高运行效率 [115]。解决研究生产力和影响中的性别差异对于促进技术研究的公平性至关重要 [116]。
社交媒体数据在农村地区的适用性有限,这强调了将社交媒体数据与地理信息相结合的方法的重要性 [10]。GIS 和 GeoAI 所面临的挑战需要持续的研究和创新,以制定标准化的方法,增强跨学科合作,并提高各行业的技术效能 [117, 20, 5]。
6.5 未来方向和创新
AI、GIS 及相关技术的整合为未来的进步和创新提供了机遇。在学术界加强工具构建可以促进地理研究,而开发交互式培训项目将使未来的研究人员掌握高级技能 [105]。在机器学习方面,专注于贝叶斯算法并完善用于复杂场景的标准方程将提高 AI 模型的适应性 [118, 119]。
对 mapKurator 等系统的改进以及传感器技术的进步对于提高估计精度和系统适应性至关重要 [120, 106]。用于城市场景分析的可扩展方法和分散式控制机制强调了环境监测和资源管理领域潜在的创新 [121, 94]。未来的研究将着重优化查询流程、改进用户界面,以及在地理空间应用中整合实时反馈 [81]。
开发边缘智能系统和探索 TrackGPT 的扩展将提升预测能力 [2, 99]。对农村应用和社交媒体情绪对基础设施韧性的影响的研究将加深对复杂系统的理解 [10]。未来的工作将重点优化算法以提高可扩展性,并探索与其他计算范式的集成 [34, 36]。
这些未来方向展现了整合 AI、GIS 及相关技术的变革潜力,能够促进可持续的社区发展。GIS 数据挖掘的进步可以预测城市蔓延,使有效的城市规划策略成为可能。通过“大数据”,GIS 中的方法能够细致地理解社会影响,促进协作方式来应对社区挑战。“地方流动性”框架强调了灾害管理中的社会学视角,凸显了知情决策在可持续发展中的潜力 [62, 27, 20, 33]。
7 结论
人工智能(AI)、大型语言模型(LLM)、地理信息系统(GIS)及相关技术的融合标志着在增强各领域决策制定和运行效率方面一个关键的进展。这种集成促进了数据透明度的提高和决策的及时性,特别是在城市规划、环境监测和资源管理等领域。通过将复杂过程自动化,这些技术简化了数据处理,使对复杂数据集的深入分析成为可能,这在当今以数据为中心的环境中至关重要。随着各组织越来越依赖数据进行战略规划和运营执行,这些集成系统的重要性变得日益突出。
在城市研究中,这些技术的融合使验证城市规模定律成为可能,并通过先进的大数据处理技术为城市动态提供了深刻的洞见。这一能力对于管理动态的地理空间现象至关重要,正如那些在跨城市应用中表现出色的框架所示,它们提高了城市政策决策和规划策略。除此之外,可视化和模拟城市环境的能力促进了利益相关者的参与,推动了城市发展的参与式方法。通过确保资源的高效分配和为所有社区成员带来公平的利益,这种集成最终支持了可持续的城市增长。
在公共卫生领域,将地理空间数据和行为数据融合到动态仿真框架中加强了对空气传播疾病爆发的理解,为决策提供了宝贵洞见。这种集成对于推进数据中心运营方面的研究并实现更好的预测建模至关重要。将健康数据与地理信息结合分析使公共卫生官员能够更有效地识别热点并实施有针对性的干预措施。此外,AI 应用中的创新方法(如效能比)通过将计算成本纳入考虑来优化资源利用,从而提高了公共卫生计划中预测模型的准确性和资源分配。
GIS 教育的重要性体现在需要将全球最佳实践与本地教育环境相平衡,着重于制定适当的教育方法。这种方法确保未来一代具备有效利用 GIS 技术所需的技能。通过培养健全的教育框架,机构可以让学生为应对复杂的空间问题做好准备,并为各个领域的创新解决方案做出贡献。此外,加强 GIS 教育可以培养出更具知识的公民群体,使其理解空间数据对社会问题的影响。随着该领域对熟练专业人员的需求持续增长,强调全面的 GIS 教育将对于塑造未来劳动力至关重要。
这些进展强调了整合 AI、LLM、GIS 及相关技术的变革潜力,它推动了各领域的创新并促进了可持续发展。通过应对挑战和探索创新解决方案,这些技术的集成将继续为改善社会成果做出贡献,增强决策过程并在各个领域催生创新。这些技术的持续演进有望释放新的可能性,进一步弥合数据与可行洞察之间的差距。随着研究人员和从业者继续在各学科间开展合作,其集体努力无疑将引领构建更具弹性和适应性的系统,以应对现代世界的复杂挑战。
参考文献
[1] J. Gerard Wolff. Towards an intelligent database system founded on the sp theory of computing and cognition, 2003.
[2] Vincenzo Barbuto, Claudio Savaglio, Roberto Minerva, Noel Crespi, and Giancarlo Fortino. Towards an edge intelligence-based traffic monitoring system, 2024.
[3] Jacqueline Harding and Nathaniel Sharadin. What is it for a machine learning model to have a capability?, 2024.
[4] Xiaoming Li, Zhihan Lv, Baoyun Zhang, Weixi Wang, Shengzhong Feng, and Jinxing Hu. Webvrgis based city bigdata 3d visualization and analysis, 2015.
[5] Sayfutdinov Feruz Ilniyazovich. Using gis software and the importance of digital history in the study of history. International Journal Of History And Political Sciences, 3(10):31–33, 2023.
[6] Andrew Schulz, Suzanne Stathatos, Cassandra Shriver, and Roxanne Moore. Utilizing online and open-source machine learning toolkits to leverage the future of sustainable engineering, 2023.
[7] Piyush Yadav, Dipto Sarkar, Dhaval Salwala, and Edward Curry. Traffic prediction framework for openstreetmap using deep learning based complex event processing and open traffic cameras, 2020.
[8] A. Pavard, A. Dony, and P. Bordin. Un referentiel spatial pour la gestion de la voirie dans son environnement, 2022.
[9] Remi Cura, Julien Perret, and Nicolas Paparoditis. User assisted and automatic inverse procedural road modelling at the city scale, 2018.
[10] H M Imran Kays, Khondhaker Al Momin, Menziwokuhle Bandise Thwala, K. K. “Muralee” Muraleetharan, and Arif Mohaimin Sadri. Translating social media crisis narratives into road network utilization metrics: The case of 2020 oklahoma ice storm, 2022.
[11] Christopher Irrgang, Niklas Boers, Maike Sonnewald, Elizabeth A. Barnes, Christopher Kadow, Joanna Staneva, and Jan Saynisch-Wagner. Will artificial intelligence supersede earth system and climate models?, 2021.
[12] Dimitris Ballas, Graham Clarke, Rachel Franklin, and Andy Newing. GIS and the social sciences: Theory and applications. Routledge, 2017.
[13] Tom Kelly and Niloy J. Mitra. Simplifying urban data fusion with bigsur, 2018.
[14] I. Chittumuri, N. Alshehab, R. J. Voss, L. L. Douglass, S. Kamrava, Y. Fan, J. Miskimins, W. Fleckenstein, and S. Bandyopadhyay. Risk analysis of flowlines in the oil and gas sector: A gis and machine learning approach, 2025.
[15] Mei Shan, Zhou Xuan, Zhu Yifan, Zu Zhenghu, Zheng Tao, A. V. Boukhanovsky, and P. M. A Sloot. Simulating city-level airborne infectious diseases, 2011.
[16] Sara Shaker Abed El-Hamied, Ahmed Abou El-Fotouh Saleh, and Aziza Asem. Survey on using gis in evacuation planning, 2012.
[17] Sen Huang, Kaixiang Yang, Sheng Qi, and Rui Wang. When large language model meets optimization, 2024.
[18] Christopher Gorham. The 4th industrial revolution effect on the enterprise cyber strategy, 2020.
[19] Razvan Ciobanu, Alexandru Purdila, Laurentiu Piciu, and Andrei Damian. Solis – the mlops journey from data acquisition to actionable insights, 2022.
[20] Sean P. Gorman. The danger of a big data episteme and the need to evolve gis, 2013.
[21] Jian Chen, Peilin Zhou, Yining Hua, Dading Chong, Meng Cao, Yaowei Li, Zixuan Yuan, Bing Zhu, and Junwei Liang. Vision-language models meet meteorology: Developing models for extreme weather events detection with heatmaps, 2024.
[22] Caitlin Condon, Mark Abkowitz, Harish Gadey, Robert Claypool, Steven Maheras, Matthew Feldman, and Erica Bickford. Verification and validation of start: A spent nuclear fuel routing and decision support tool, 2023.
[23] Yuanyuan Tian, Wenwen Li, Sizhe Wang, and Zhining Gu. Semantic similarity measure of natural language text through machine learning and a keyword-aware cross-encoder-ranking summarizer – a case study using ucgis gist body of knowledge, 2023.
[24] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dustdar, and Albert Y. Zomaya. Edge intelligence: The confluence of edge computing and artificial intelligence, 2020.
[25] Huan Ning, Zhenlong Li, Temitope Akinboyewa, and M. Naser Lessani. An autonomous gis agent framework for geospatial data retrieval, 2024.
[26] Olivier Billaud, Maxence Soubeyrand, Sandra Luque, and Maxime Lenormand. Comprehensive decision-strategy space exploration for efficient territorial planning strategies, 2020.
[27] Ali Akbar Septiandri, Marios Constantinides, and Daniele Quercia. The impact of responsible ai research on innovation and development, 2024.
[28] Robert Jeansoulin and Nic Wilson. Quality of geographic information: Ontological approach and artificial intelligence tools, 2014.
[29] Pengbo Xu, Xiaogu Zheng, Tianyan Gao, Yu Wang, Junping Yin, Juan Zhang, Xuanze Zhang, San Luo, Zhonglei Wang, Zhimin Zhang, Xiaoguang Hu, and Xiaoxu Chen. Yinglong-weather: Ai-based limited area models for forecasting of non-precipitation surface meteorological variables, 2025.
[30] Xiaoming Li, Zhihan Lv, Weixi Wang, Baoyun Zhang, Jinxing Hu, Ling Yin, and Shengzhong Feng. Preprint webvrgis based traffic analysis and visualization system, 2015.
[31] Xiaoming Li, Zhihan Lv, Weixi Wang, Chen Wu, and Jinxing Hu. Preprint virtual reality gis and cloud service based traffic analysis platform, 2015.
[32] Zhihan Lv and Xiaoming Li. Preprint virtual reality assistant technology for learning primary geography, 2015.
[33] Anita Pampoore-Thampi, Aparna S. Varde, and Danlin Yu. Mining gis data to predict urban sprawl, 2021.
[34] Reddy Mandati, Po-Chen Chen, Vladyslav Anderson, Bishwa Sapkota, Michael Jarrell Warren, Bobby Besharati, Ankush Agarwal, and Samuel Johnston III au2. Utilizing spatiotemporal data analytics to pinpoint outage location, 2024.
[35] Hao Wu. What is learning? a primary discussion about information and representation, 2015.
[36] Denis Kleyko, Mike Davies, E. Paxon Frady, Pentti Kanerva, Spencer J. Kent, Bruno A. Olshausen, Evgeny Osipov, Jan M. Rabaey, Dmitri A. Rachkovskij, Abbas Rahimi, and Friedrich T. Sommer. Vector symbolic architectures as a computing framework for emerging hardware, 2023.
[37] Chandranath Adak. Unsupervised text extraction from g-maps, 2014.
[38] Xiaofan Liang and Yuhao Kang. A review of spatial network insights and methods in the context of planning: Applications, challenges, and opportunities, 2024.
[39] Tao Jia and Bin Jiang. Measuring urban sprawl based on massive street nodes and the novel concept of natural cities, 2010.
[40] John Vargas, Shivangi Srivastava, Devis Tuia, and Alexandre Falcao. Openstreetmap: Challenges and opportunities in machine learning and remote sensing, 2020.
[41] Geoff Boeing. The right tools for the job: The case for spatial science tool-building, 2020.
[42] Ananay Vikram Gupta, Aaditya Prakash Kattekola, Ansh Vikram Gupta, Dacharla Venkata Abhiram, Kamesh Namuduri, and Ravichandran Subramanian. A traffic control framework for uncrewed aircraft systems, 2023.
[43] Thomas Castelli, Aidean Sharghi, Don Harper, Alain Tremeau, and Mubarak Shah. Autonomous navigation for low-altitude uavs in urban areas, 2016.
[44] Kenichi Sugihara, Martin Wallace, Kongwen, Zhang, and Youry Khmelevsky. Roof damage assessment from automated 3d building models, 2021.
[45] Zhenhui Li, Hongwei Zhang, and Kan Wu. Scalable analysis of urban scaling laws: Leveraging cloud computing to analyze 21,280 global cities, 2024.
[46] Francesco Castaldo, Amir Zamir, Roland Angst, Francesco Palmieri, and Silvio Savarese. Semantic cross-view matching, 2015.
[47] Helmi Ben Hmida, Christophe Cruz, Christophe Nicolle, and Frank Boochs. Toward the automatic generation of a semantic vrml model from unorganized 3d point clouds, 2013.
[48] Yuhao Kang, Song Gao, and Robert E. Roth. Transferring multiscale map styles using generative adversarial networks, 2019.
[49] Anasse Boutayeb, Iyad Lahsen-cherif, and Ahmed El Khadimi. A comprehensive geoai review: Progress, challenges and outlooks, 2024.
[50] Hartmut Surmann, Dominik Slomma, Robert Grafe, and Stefan Grobelny. Deployment of aerial robots during the flood disaster in erftstadt / blessem in july 2021, 2022.
[51] Yanguang Chen and Jiejing Wang. Recursive subdivision of urban space and zipf’s law, 2012.
[52] Osim Kumar Pal, Md Sakib Hossain Shovon, M. F. Mridha, and Jungpil Shin. A comprehensive review of ai-enabled unmanned aerial vehicle: Trends, vision , and challenges, 2023.
[53] Jianli Wei, Deniz Karakay, and Alper Yilmaz. A gis aided approach for geolocalizing an unmanned aerial system using deep learning, 2022.
[54] Reddy Mandati, Vladyslav Anderson, Po chen Chen, Ankush Agarwal, Tatjana Dokic, David Barnard, Michael Finn, Jesse Cromer, Andrew Mccauley, Clay Tutaj, Neha Dave, Bobby Besharati, Jamie Barnett, and Timothy Krall. Integrating artificial intelligence models and synthetic image data for enhanced asset inspection and defect identification, 2024.
[55] Simon Kohaut, Benedict Flade, Julian Eggert, Devendra Singh Dhami, and Kristian Kersting. Star maps: Unveiling uncertainty in geospatial relations, 2024.
[56] Federico-Vladimir Gutierrez-Corea and Adolfo-Javier Urrutia-Zambrana. Propuesta de sistema geoinformático con representación de escenarios para auxiliar en la nueva metodología propuesta por ineter y la uni para el estudio a gran escala de la vulnerabilidad y daños debido a sismos en las edificaciones, 2012.
[57] Umar Yahya, Ndawula Noah, Asingwire Hanifah, Lubega Faham, Abdal Kasule, and Hamisi Ramadhan Mubarak. Rfid-cloud integration for smart management of public car parking spaces, 2022.
[58] Changjie Chen, Jasmeet Judge, and David Hulse. Pylusat: An open-source python toolkit for gis-based land use suitability analysis, 2021.
[59] M. F. M. Firdhous, D. L. Basnayake, K. H. L. Kodithuwakku, N. K. Haththalla, N. W. Charlin, and P. M. R. I. K. Bandara. Route planning made easy - an automated system for sri lanka, 2012.
[60] Emanuele Strano, Alessio Cardillo, Valentino Iacoviello, Vito Latora, Roberto Messora, Sergio Porta, and Salvatore Scellato. Street centrality vs. commerce and service locations in cities: a kernel density correlation case study in bologna, italy, 2007.
[61] Panayotis Papoutsis, Safa Fennia, Constant Bridon, and Tarn Duong. Relaxing door-to-door matching reduces passenger waiting times: a workflow for the analysis of driver gps traces in a stochastic carpooling service, 2021.
[62] Farrukh Chishtie, Rizwan Bulbul, Panka Babukova, and Johannes Scholz. Platial mobility: expanding place and mobility in gis via platio-temporal representations and the mobilities paradigm, 2022.
[63] Kandarp Khandwala, Rudra Sharma, and Snehal Rao. Context aware dynamic traffic signal optimization, 2014.
[64] Weizi Li, Meilei Jiang, Yaoyu Chen, and Ming C. Lin. Estimating traffic conditions at metropolitan scale using traffic flow theory, 2018.
[65] Moritz Laupichler and Peter Sanders. Fast many-to-many routing for ridesharing with multiple pickup and dropoff locations, 2023.
[66] S. K. Nayak, S. B. Thorat, and N. V. Kalyankar. Gis: Geographic information system an application for socio-economical data collection for rural area, 2010.
[67] Yuxiang Zhang, Suresh Devalapalli, Sachin Mehta, and Anat Caspi. Oasis: Automated assessment of urban pedestrian paths at scale, 2023.
[68] Yeasir Fathah Rumi, Uzzal Kumar Prodhan, Mohammed Ibrahim Hussain, A. H. M. Shahariar Parvez, and Md. Ali Hossain. Strategy for assessment of land and complex fields type analysis through gis in bangladesh, 2013.
[69] Dakota J. Thompson and Amro M. Farid. A hetero-functional graph structural analysis of the american multi-modal energy system, 2022.
[70] Sukhwan Chung, Daniel Sardak, Jeffrey Cegan, and Igor Linkov. Assessing the robustness and resilience of u.s. strategic highways: A network science perspective, 2024.
[71] Zihui Ma, Guangxiao Hu, Ting-Syuan Lin, Lingyao Li, Songhua Hu, Loni Hagen, and Gregory B. Baecher. Assessing response disparities in california wildland-urban-interface (wui) cities using the compartmental model, 2024.
[72] Yingjie Hu, Zhenhua Lv, Jianping Wu, Krzysztof Janowicz, Xizhi Zhao, and Bailang Yu. A multi-stage collaborative 3d gis to support public participation, 2013.
[73] Kars Alfrink, Ianus Keller, Neelke Doorn, and Gerd Kortuem. Contestable camera cars: A speculative design exploration of public ai that is open and responsive to dispute, 2023.
[74] Miao Zhang, Salman Rahman, Vishwali Mhasawade, and Rumi Chunara. Impact on public health decision making by utilizing big data without domain knowledge, 2024.
[75] Gabriel Spadon and Jose F. Rodrigues-Jr. From cities to series: Complex networks and deep learning for improved spatial and temporal analytics*, 2022.
[76] Md. Faiyaz Abdullah Sayeedi, Fahim Hafiz, and Md Ashiqur Rahman. Mosquitofusion: A multiclass dataset for real-time detection of mosquitoes, swarms, and breeding sites using deep learning, 2024.
[77] Xintao Liu, Joseph Y. J. Chow, and Songnian Li. Online monitoring of local taxi travel momentum and congestion effects using projections of taxi gps-based vector fields, 2018.
[78] Ayad Ghany Ismaeel and Sanaa Enwaya Rizqo. Optimal productivity of succoring patients system using mobile gis based on wcf technology, 2013.
[79] Nouraddin Misagh and Mohammadreza Ashouri. Spatial modeling of oil exploration areas using neural networks and anfis in gis, 2016.
[80] Ian Mancilla-Wulff, Jaime Carrasco, Cristobal Pais, Alejandro Miranda, and Andres Weintraub. Two scalable approaches for burned-area mapping using u-net and landsat imagery, 2023.
[81] Yu Feng, Puzhen Zhang, Guohui Xiao, Linfang Ding, and Liqiu Meng. Towards a barrier-free geoqa portal: Natural language interaction with geospatial data using multi-agent llms and semantic search, 2025.
[82] Michel Nabaa, Cyrille Bertelle, Antoine Dutot, Damien Olivier, and Pascal Mallet. A dynamic vulnerability map to assess the risk of road network traffic utilization, 2009.
[83] Comprehensive evaluation of emergency shelters in wuhan city based on gis.
[84] Rohit Ghosh, Jishnu Adhikary, and Rezki Chemlal. Fire spread modeling using probabilistic cellular automata, 2024.
[85] Tingting Zhao, Shubo Tian, Jordan Daly, Melissa Geiger, Minna Jia, and Jinfeng Zhang. Information retrieval and classification of real-time multi-source hurricane evacuation notices, 2024.
[86] Ben Ortiz, Laura Kahn, Marc Bosch, Philip Bogden, Viveca Pavon-Harr, Onur Savas, and Ian McCulloh. Improving community resiliency and emergency response with artificial intelligence, 2020.
[87] Nicolas Girard, Dmitriy Smirnov, Justin Solomon, and Yuliya Tarabalka. Polygonal building segmentation by frame field learning, 2021.
[88] Geoff Boeing and Dani Arribas-Bel. Gis and computational notebooks, 2021.
[89] Guy Lansley, Michael de Smith, Michael Goodchild, and Paul Longley. Big data and geospatial analysis, 2019.
[90] Francesca Larosa, Jaroslav Mysiak, Marco Molinari, Panagiotis Varelas, Haluk Akay, Will McDowall, Catalina Spadaru, Francesco Fuso-Nerini, and Ricardo Vinuesa. Closing the gap between research and projects in climate change innovation in europe, 2023.
[91] Aditya Dave, Mengchen Zhu, Dapeng Hu, and Sachin Tiwari. Climate ai for corporate decarbonization metrics extraction, 2024.
[92] Yufen Zhang, James S. Hodges, and Sudipto Banerjee. Smoothed anova with spatial effects as a competitor to mcar in multivariate spatial smoothing, 2010.
[93] Kun Tang, Xu Cao, Zhipeng Cao, Tong Zhou, Erlong Li, Ao Liu, Shengtao Zou, Chang Liu, Shuqi Mei, Elena Sizikova, and Chao Zheng. Thma: Tencent hd map ai system for creating hd map annotations, 2022.
[94] Meiyi Li and Javad Mohammadi. Towards reliable neural optimizers: A permutation equivariant neural approximation for information processing applications, 2024.
[95] Osmar Luiz Ferreira de Carvalho, Osmar Abilio de Carvalho Junior, Anesmar Olino de Albuquerque, and Daniel Guerreiro e Silva. Offshore wind plant instance segmentation using sentinel-1 time series, gis, and semantic segmentation models, 2023.
[96] Vahid Ahmadi. Deforestation prediction using neural networks and satellite imagery in a spatial information system, 2018.
[97] Mehul Bhatt and Jan Oliver Wallgruen. Geospatial narratives and their spatio-temporal dynamics: Commonsense reasoning for high-level analyses in geographic information systems, 2013.
[98] Raj Bridgelall. Tutorial and practice in linear programming: Optimization problems in supply chain and transport logistics, 2023.
[99] Nicholas Stroh. Trackgpt – a generative pre-trained transformer for cross-domain entity trajectory forecasting, 2024.
[100] Robert Jeansoulin. Big data: How geo-information helped shape the future of data engineering, 2015.
[101] Xingfu Yi, Rongpeng Li, Chenghui Peng, Fei Wang, Jianjun Wu, and Zhifeng Zhao. Rhfedmtl: Resource-aware hierarchical federated multi-task learning, 2023.
[102] Alexandru Munteanu and Marian Neagul. Semantic segmentation of vegetation in remote sensing imagery using deep learning, 2022.
[103] Leoncio Jimenez and Francisco Venegas. Sociotechnical approach to enterprise generative artificial intelligence (e-genai), 2025.
[104] Irum Sanaullah, Nael Alsaleh, Shadi Djavadian, and Bilal Farooq. Spatio-temporal analysis of on demand transit: A case study of belleville, canada, 2022.
[105] Ihor Kholoshyn, Tetiana Nazarenko, Olga Bondarenko, Olena Hanchuk, and Iryna Varfolomyeyeva. The application of geographic information systems in schools around the world: a retrospective analysis, 2022.
[106] Nan Xu, Hassan Askari, Yanjun Huang, Jianfeng Zhou, and Amir Khajepour. Tire force estimation in intelligent tires using machine learning, 2020.
[107] Anjali Raj, Adway Mitra, and Manjira Sinha. Deep learning for slum mapping in remote sensing images: A meta-analysis and review, 2024.
[108] Kevin R. McKee. Human participants in ai research: Ethics and transparency in practice, 2024.
[109] Junfeng Jiao, Saleh Afroogh, Yiming Xu, and Connor Phillips. Navigating llm ethics: Advancements, challenges, and future directions, 2025.
[110] Adam Perrett. Emergent explainability: Adding a causal chain to neural network inference, 2024.
[111] S. K. Devitt, P. W. J. Baxter, and G. Hamilton. The ethics of biosurveillance, 2021.
[112] Jessica Morley, Luciano Floridi, Libby Kinsey, and Anat Elhalal. From what to how: An initial review of publicly available ai ethics tools, methods and research to translate principles into practices, 2019.
[113] Diego Ortega and Elka Korutcheva. A schelling extended model in networks – characterization of ghettos in washington d.c, 2022.
[114] Sneha Jha, Dharmendra Saraswat, and Mark D. Ward. Analyzing trends for agricultural decision support system using twitter data, 2024.
[115] Amr Shafik, Moustafa Elkhedr, Dalia Said, and Ahmed Hassan. Environmental impacts of msw collection route optimization using gis: A case study of 10th of ramadan city, egypt, 2022.
[116] Anahita Hajibabaei, Andrea Schiffauerova, and Ashkan Ebadi. Gender-specific patterns in the artificial intelligence scientific ecosystem, 2021.
[117] Dalton Lunga, Yingjie Hu, Shawn Newsam, Song Gao, Bruno Martins, Lexie Yang, and Xueqing Deng. Geoai at acm sigspatial: The new frontier of geospatial artificial intelligence research, 2022.
[118] Ivens Portugal, Paulo Alencar, and Donald Cowan. The use of machine learning algorithms in recommender systems: A systematic review, 2016.
[119] Zhiting Hu and Eric P. Xing. Toward a ‘standard model’ of machine learning, 2023.
[120] Jina Kim, Zekun Li, Yijun Lin, Min Namgung, Leeje Jang, and Yao-Yi Chiang. The mapkurator system: A complete pipeline for extracting and linking text from historical maps, 2023.
[121] Xin Wang, Wendi Zhang, Hong Xie, Haibin Ai, Qiangqiang Yuan, and Zongqian Zhan. Tortho-gaussian: Splatting true digital orthophoto maps, 2024.