非结构化数据怎么存?——开源对象存储方案介绍

随着企业对数据湖的需求增加,Hadoop在处理大量数据时表现出色,但在小文件存储方面存在局限。对象存储成为了解决方案,如阿里云OSS,提供高持久性和可用性。开源对象存储如MinIO、Ceph提供了自建存储的可能,特别是MinIO因其轻量和易用性受到青睐。这些替代方案为企业提供了更多的数据存储灵活性和控制权。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

过去的相当长的一段时间里,商用对象存储占据了市场上的大量的份额。国外的Amazon S3,国内的阿里云OSS都成为了大多数公司的选择。但是构建一个企业级的数据湖(包括结构化和非结构化数据)已经成为了越来越多公司的目标。那么Hadoop还能满足我们的要求吗?还是我们需要更多的选择?

存储方案

如图所示,底层存储大体可以分为四类。对象存储(Object Storage),NoSQL 数据库(NoSQL Sources),关系型数据库(RDBMS Storage),大数据(Hadoop)。

对于大量的数据存储与归档,毫无疑问Hadoop是一个不错的选择。但是Hadoop是为大文件存储而设计的,在小文件存储中有着非常大的劣势。

HDFS缺陷

元数据的扩展性:NameNode是一个中央元数据服务节点,也是集群管理节点,文件系统的元数据以及块位置关系全部在内存中。NameNode对内存的要求非常高,需要定制大内存的机器,内存大小也限制了集群扩展性。

全局锁:NameNode 有一把FSNamesystem全局锁,每个元数据请求时都会加这把锁。虽然是读写分开的,且有部分流程对该锁的持有范围进行了优化,但依然大问题。

块汇报风暴:HDFS块大小默认128M&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据流动

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值