过去的相当长的一段时间里,商用对象存储占据了市场上的大量的份额。国外的Amazon S3,国内的阿里云OSS都成为了大多数公司的选择。但是构建一个企业级的数据湖(包括结构化和非结构化数据)已经成为了越来越多公司的目标。那么Hadoop还能满足我们的要求吗?还是我们需要更多的选择?
存储方案
如图所示,底层存储大体可以分为四类。对象存储(Object Storage),NoSQL 数据库(NoSQL Sources),关系型数据库(RDBMS Storage),大数据(Hadoop)。
对于大量的数据存储与归档,毫无疑问Hadoop是一个不错的选择。但是Hadoop是为大文件存储而设计的,在小文件存储中有着非常大的劣势。
HDFS缺陷
元数据的扩展性:NameNode是一个中央元数据服务节点,也是集群管理节点,文件系统的元数据以及块位置关系全部在内存中。NameNode对内存的要求非常高,需要定制大内存的机器,内存大小也限制了集群扩展性。
全局锁:NameNode 有一把FSNamesystem全局锁,每个元数据请求时都会加这把锁。虽然是读写分开的,且有部分流程对该锁的持有范围进行了优化,但依然大问题。
块汇报风暴:HDFS块大小默认128M&#