
算法厚黑学
贾诩是也
走过很多弯路,一直坚强、执着的眺望着远方、、、一个听着小米布斯故事成长起来的老码农。不忘初心,方得始终、、、给自己鼓劲加油,为这个时代华丽的时代喝彩!
展开
-
算法浅谈:图(下)
一: 最小生成树1. 概念 首先看如下图,不知道大家能总结点什么。 对于一个连通图G,如果其全部顶点和一部分边构成一个子图G1,当G1满足: ① 刚好将图中所有顶点连通。②顶点不存在回路。则称G1就是G的“生成树”。 其实一句话总结就是:生成树是将原图的全部顶点以最小的边连通的子图,这不,如下的连通图可以得到下面的两个生成树。转载 2018-01-29 08:24:24 · 265 阅读 · 0 评论 -
算法浅谈:图(上)
今天来分享一下图,这是一种比较复杂的非线性数据结构,之所以复杂是因为他们的数据元素之间的关系是任意的,而不像树那样被几个性质定理框住了,元素之间的关系还是比较明显的,图的使用范围很广的,比如网络爬虫,求最短路径等等,不过大家也不要胆怯,越是复杂的东西越能体现我们码农的核心竞争力。 既然要学习图,得要遵守一下图的游戏规则。一: 概念 图是由转载 2018-01-29 08:24:09 · 268 阅读 · 0 评论 -
算法浅谈:树操作(下)
今天说下最后一种树,大家可否知道,文件压缩程序里面的核心结构,核心算法是什么?或许你知道,他就运用了赫夫曼树。听说赫夫曼胜过了他的导师,被认为”青出于蓝而胜于蓝“,这句话也是我比较欣赏的,嘻嘻。 一 概念 了解”赫夫曼树“之前,几个必须要知道的专业名词可要熟练记住啊。 1: 结点的权 “权”就相当于“重要度”,我们形象的用一个具体的转载 2018-01-29 08:23:51 · 207 阅读 · 0 评论 -
算法浅谈:树操作(中)
先前说了树的基本操作,我们采用的是二叉链表来保存树形结构,当然二叉有二叉的困扰之处,比如我想找到当前结点的“前驱”和“后继”,那么我们就必须要遍历一下树,然后才能定位到该“节点”的“前驱”和“后继”,每次定位都是O(n),这不是我们想看到的,那么有什么办法来解决呢? (1) 在节点域中增加二个指针域,分别保存“前驱”和“后继”,那么就是四叉链表了,哈哈,还是有点浪费空间啊。转载 2018-01-29 08:23:28 · 190 阅读 · 0 评论 -
算法浅谈:树操作(上)
先前我们讲的都是“线性结构”,他的特征就是“一个节点最多有一个”前驱“和一个”后继“。那么我们今天讲的树会是怎样的呢?我们可以对”线性结构“改造一下,变为”一个节点最多有一个"前驱“和”多个后继“。哈哈,这就是我们今天说的”树“。 一: 树 我们思维中的”树“就是一种枝繁叶茂的形象,那么数据结构中的”树“该是怎么样呢?对的,他是一种现实中倒立的树。1:术语转载 2018-01-26 05:22:41 · 418 阅读 · 0 评论 -
算法浅谈:栈
天跟大家聊聊栈,在程序设计中,栈的使用还是非常广泛的,比如有“括号匹配问题“,”html结构匹配问题“。所以说掌握了”栈“的使用,对我们学习算法还是很有帮助的。 一: 概念 栈,同样是一种特殊的线性表,是一种Last In First Out(LIFO)的形式,现实中有很多这样的例子, 比如:食堂中的一叠盘子,我们只能从顶端一个一个的取。 二:存转载 2018-01-26 05:20:50 · 5266 阅读 · 2 评论 -
算法浅谈:队列
可能大家都知道,线性表的变种非常非常多,比如今天讲的“队列”,灰常有意思啊。 一:概念 队列是一个”先进先出“的线性表,牛X的名字就是“First in First Out(FIFO)”, 生活中有很多这样的场景,比如读书的时候去食堂打饭时的”排队“。当然我们拒绝插队。 二:存储结构 前几天也说过,线性表有两种”存储结构“,①翻译 2018-01-26 05:18:21 · 2530 阅读 · 0 评论 -
算法浅谈:线性表02
一:线性表的简单回顾 上一篇跟大家聊过“线性表"顺序存储,通过实验,大家也知道,如果我每次向顺序表的头部插入元素,都会引起痉挛,效率比较低下,第二点我们用顺序存储时,容易受到长度的限制,反之就会造成空间资源的浪费。 二:链表 对于顺序表存在的若干问题,链表都给出了相应的解决方案。1. 概念:其实链表的“每个节点”都包含一个”数据域“和”指针域“。翻译 2018-01-26 05:17:56 · 229 阅读 · 0 评论 -
算法浅谈:线性表01
人活在社会上不可能孤立,比如跟美女有着千丝万缕的关系,有的是一对一,有的是一对多,有的是多对多。哈哈,我们的数据也一样,存在这三种基本关系,用术语来说就是: 线性关系。 树形关系。 网状关系。 一: 线性表 1 概念: 线性表也就是关系户中最简单的一种关系,一对一。 如:学生学号的翻译 2018-01-26 05:15:04 · 232 阅读 · 0 评论 -
算法浅谈:五大经典查找【下】
树在数据结构中大行其道,什么领域都要沾一沾,碰一碰。就拿我们前几天学过的排序就用到了堆和今天讲的”二叉排序树“,所以偏激的说,掌握的树你就是牛人了。 今天就聊聊这个”五大经典查找“中的最后一个”二叉排序树“。 1. 概念: 其实很简单,若根节点有左子树,则左子树的所有节点都比根节点小。 若根节点有右子树,转载 2018-01-26 05:14:36 · 290 阅读 · 0 评论 -
算法浅谈:五大经典查找【中】
哈希查找: 对的,他就是哈希查找,说到哈希,大家肯定要提到哈希函数,呵呵,这东西已经在我们脑子里面形成固有思维了。大家一定要知道“哈希“中的对应关系。 比如说: ”5“是一个要保存的数,然后我丢给哈希函数,哈希函数给我返回一个”2",那么此时的”5“和“2”就建立一种对应关系,这种关系就是所谓的“哈希关系”,在实际应用中也就形成了”2“是key,”5“是valu转载 2018-01-26 05:14:06 · 191 阅读 · 0 评论 -
算法浅谈:五大经典查找【上】
在我们的生活中,无处不存在着查找,比如找一下班里哪个mm最pl,猜一猜mm的芳龄....... 对的这些都是查找。 在我们的算法中,有一种叫做线性查找。分为:顺序查找。 折半查找。 查找有两种形态:分为:破坏性查找, 比如有一群mm,我猜她们的年龄,第一位猜到了是23+,此时这位mm已经从我脑海里面的mmlist中remove掉了。原创 2018-01-26 05:13:18 · 943 阅读 · 0 评论 -
算法浅谈:七大经典排序03
今天跟大家聊聊最后三种排序: 直接插入排序,希尔排序和归并排序。 直接插入排序: 这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一手乱牌时,我们就要按照大小梳理扑克,30秒后, 扑克梳理完毕,4条3,5条s,哇塞...... 回忆一下,俺们当时是怎么梳理的。 最左一张牌是3,第二张牌是5,第三张牌又是3,赶紧插到第一张牌后面去,第四转载 2018-01-26 05:11:11 · 190 阅读 · 0 评论 -
算法浅谈:七大经典排序02
今天说的是选择排序,包括“直接选择排序”和“堆排序”。 话说上次“冒泡排序”被快排虐了,而且“快排”赢得了内库的重用,众兄弟自然眼红,非要找快排一比高下。这不今天就来了两兄弟找快排算账。 1.直接选择排序: 先上图: 说实话,直接选择排序最类似于人的本能思想,比如把大小不一的玩具让三岁小毛孩对大小排个序,那小孩首先会在这么多玩具中找到最小的放在第一位,然后找转载 2018-01-26 05:10:29 · 177 阅读 · 0 评论 -
算法浅谈:七大经典排序01
针对现实中的排序问题,算法有七把利剑可以助你马道成功。 首先排序分为四种: 交换排序: 包括冒泡排序,快速排序。 选择排序: 包括直接选择排序,堆排序。 插入排序: 包括直接插入排序,希尔排序。 合并排序: 合并排序。 那么今天我们讲的就是交换排序,我们都知道,C#类库提供的排序是快排,为了让今天玩的有意思点,我们设计算转载 2018-01-25 02:28:27 · 198 阅读 · 0 评论 -
算法思想09--后记
小师弟也跑去找工作了,也就碰到了各种各样的面试题(就是:如何产生1-100之间的100个不重复的随机数),如果这是你是第一次看到这个题目,也许你的想法有很多。 1:首先从原始数组中随机选择一个数字,然后将该数字从数组中剔除,再随记选,再剔除,重复99次,就解决了。 我们知道从数组中剔除一个元素的复杂度为O(N),那么随机选取n个数字,它的复杂度就是O(N2)了。2:用hash原创 2018-01-25 02:28:06 · 207 阅读 · 0 评论 -
算法思想08--概率思想
今天写最后一篇来结束这个系列,我们知道很多算法解决问题的步骤都是固定的,而概率算法每一步的选择都是随机的,当在某些领域问题中通常比最优选择省时,所以就大大提高了算法的效率,降低了复杂度。 一:思想 这里主要讲一下“数值概率算法”,该算法常用于解决数值计算问题,并且往往只能求得问题的近似解,同一个问题同样的概率算法求解两次可能得到的结果大不一样,不过没关系,这种“近似解转载 2018-01-25 02:27:40 · 377 阅读 · 0 评论 -
算法思想07--动态规划
今天跟大家分享下算法思想中比较难的一种"动态规划",动态规划给人像是作战时常用的“迂回战术”,或者说是游击战,在运动中寻找突破口。 一: 思想 首先要了解”动态规划“,必须先知道什么叫做”多阶段决策“,百科里面对这个问题解释的很全,我就load一段出来,大家得要好好品味,好好分析。 上面图中最后一句话就定义了动态规划是要干什么的问题。 二:使用规则转载 2018-01-25 02:27:17 · 172 阅读 · 0 评论 -
算法思想06--回溯思想
记得广告中经常听到过,抱着试试看的态度买了3个疗程,效果不错........ 也经常听人说过什么车到山前必有路,船到桥头自然直。哈哈,这种思想就是回溯思想,也可称为试探思想。 一: 思想 有时我们要得到问题的解,先从其中某一种情况进行试探,在试探过程中,一旦发现原来的选择是错误的,那么就退回一步重新选择, 然后继续向前试探,反复这样的过程直到求出问题的解。转载 2018-01-25 02:27:03 · 229 阅读 · 0 评论 -
算法思想05--分治思想
一: 思想 有时候我们处理一个复杂的问题,可能此问题求解步骤非常杂,也可能是数据非常多,导致我们当时很难求出或者无法求出,古语有云:步步为营,各个击破,这个思想在算法中称为分治思想,就是我们可以将该问题分解成若干个子问题,然后我们逐一解决子问题,最后将子问题的答案组合成整个问题的答案。 二: 条件 当然各个思想都有它的使用领域,所以玩这场分治游戏就要遵守它的转载 2018-01-25 02:26:16 · 242 阅读 · 0 评论 -
算法思想04--贪心思想
今天分享一下枚举思想,这种思想也常是码畜,码奴常用的手段,经常遭到码农以上级别的鄙视,枚举思想可以说是在被逼无奈时最后的狂吼。 一: 思想 有时我们解决某个问题时找不到一点规律,此时我们很迷茫,很痛苦,很蛋疼,突然我们灵光一现,发现候选答案的问题规模在百万之内,此时我们就想到了从候选答案中逐一比较,一直找到正确解为止。 二: 条件 前面也说了,枚举是我们转载 2018-01-25 02:25:55 · 223 阅读 · 0 评论 -
算法思想03--贪心思想
说到“贪”字,很邪恶的一个词,记得和珅和大人拆解过这个字,为”今“和”贝“,而”贝“字分解成”上面的那个XX“和”人“,意思就是说今天你贪了,明天一座监狱就把你套起来,纵观古今,有多少豪杰与"贪“结下了不解之缘,呵呵,扯远了。 这个贪心的行为在算法中也成为了一种指导思想,也就是说贪心算法所作出的选择在当时的环境下是最好的,说深一点就是它只是某种意义上的局部最优解,但不一定是全转载 2018-01-25 02:24:56 · 186 阅读 · 0 评论 -
算法思想02--递归思想
今天说说递归思想,在我们编码时,有的时候递归能够让我们的算法更加通俗易懂,并且代码量也是大大的减少。比如我先前的系列中说到了关于树的“先序,中序和后序”遍历,那么看看用递归来描叙这个问题是多少的简洁,多么的轻松。 1 #region 二叉树的先序遍历 2 /// 3 /// 二叉树的先序遍历 4 /// 5 /// 6 /// 7转载 2018-01-25 02:24:35 · 322 阅读 · 0 评论 -
算法思想01--递推思想
像俺一样奋斗在一线的码农们,一谈到学编程,都是说要学会XX语言就OK了,其实我们理解的有一点点的偏差,因为我们只说到了三分之一,其实真正的编程应该是:编程=数据结构+算法+XX语言。 对的,XX语言只是一个工具而已,就好比我们知道用笔来写字,但是不见得我们就能写出一手让张恨水为之倾倒的好字,其实我也说过算法不仅仅用于程序设计中,在我们的生活中也处处存在着算法,比如记得我大二学C#转载 2018-01-25 02:23:24 · 405 阅读 · 0 评论 -
树结构03—— Treap树
我们知道,二叉查找树相对来说比较容易形成最坏的链表情况,所以前辈们想尽了各种优化策略,包括AVL,红黑,以及今天要讲的Treap树。 Treap树算是一种简单的优化策略,这名字大家也能猜到,树和堆的合体,其实原理比较简单,在树中维护一个"优先级“,”优先级“采用随机数的方法,但是”优先级“必须满足根堆的性质,当然是“大根堆”或者“小根堆”都无所谓,比如下面的一棵树:转载 2018-01-24 08:02:41 · 179 阅读 · 0 评论 -
树结构02—— 平衡二叉树
上一篇我们聊过,二叉查找树不是严格的O(logN),导致了在真实场景中没有用武之地,谁也不愿意有O(N)的情况发生,作为一名码农,肯定会希望能把“范围查找”做到地球人都不能优化的地步。 当有很多数据灌到我的树中时,我肯定会希望最好是以“完全二叉树”的形式展现,这样我才能做到“查找”是严格的O(logN),比如把这种”树“调正到如下结构。 这里就涉及到了“树节点”转载 2018-01-24 08:02:18 · 231 阅读 · 0 评论 -
树结构01—— 二叉查找树
一:场景:1:现状 前几天我的一个大学同学负责的网站出现了严重的性能瓶颈,由于业务是写入和读取都是密集型,如果做缓存,时间间隔也只能在30s左右,否则就会引起客户纠纷,所以同学也就没有做缓存,通过测试发现慢就慢在数据读取上面,总共需要10s,天啊...原来首页的加载关联到了4张表,而且表数据中最多的在10w条以上,可以想象4张巨大表的关联,然后就是排序+范围查找等等相关的条件转载 2018-01-24 08:01:02 · 217 阅读 · 0 评论 -
经典算法24--块状链表
在数据结构的世界里,我们会认识各种各样的数据结构,每一种数据结构都能解决相应领域的问题,每一种数据结构都像是降龙十八掌中的某一掌,掌掌毙命。。。 当然每个数据结构,有他的优点,必然就有它的缺点,那么如何创造一种数据结构来将某两种数据结构进行扬长避短,那就非常完美了。这样的数据结构也有很多,比如:双端队列,还有就是今天讲的 块状链表, 我们都知道 数组 具有 O(1)的查询时间,O(翻译 2018-01-24 08:00:20 · 1173 阅读 · 0 评论 -
经典算法24--梳排序
这篇再看看一个经典的排序,梳排序,为什么取名为梳,可能每个梳都有自己的gap吧,大梳子gap大一点,小梳子gap小一点。上一篇我们看到鸡尾酒排序是在冒泡排序上做了一些优化,将单向的比较变成了双向,同样这里的梳排序也是在冒泡排序上做了一些优化。冒泡排序上我们的选择是相邻的两个数做比较,就是他们的gap为1,其实梳排序提出了不同的观点,如果将这里的gap设置为一定的大小,效率反而必gap=翻译 2018-01-24 07:59:48 · 349 阅读 · 0 评论 -
经典算法23--鸡尾酒排序
要是文艺点的话,可以说是搅拌排序,通俗易懂点的话,就叫“双向冒泡排序”,我想作为码农的话,不可能不知道冒泡排序,冒泡是一个单向的从小到大或者从大到小的交换排序,而鸡尾酒排序是双向的,从一端进行从小到大排序,从另一端进行从大到小排序。从图中可以看到,第一次正向比较,我们找到了最大值9. 第一次反向比较,我们找到了最小值1.翻译 2018-01-24 07:59:26 · 331 阅读 · 0 评论 -
经典算法22--奇偶排序
这个专题因为各种原因好久没有继续下去了,MM吧。。。你懂的,嘿嘿,不过还得继续写下去,好长时间不写,有些东西有点生疏了,这篇就从简单一点的一个“奇偶排序”说起吧,不过这个排序还是蛮有意思的,严格来说复杂度是O(N2),不过在多核的情况下,可以做到N2 /(m/2)的效率,这里的m就是待排序的个数,当m=100,复杂度为N2 /50,还行把,比冒泡要好点,因为重点是解决问题的奇思妙想。翻译 2018-01-24 07:58:08 · 3034 阅读 · 0 评论 -
经典算法21--十字链表
上一篇我们看了矩阵的顺序存储,这篇我们再看看一种链式存储方法“十字链表”,当然目的都是一样,压缩空间。一:概念 既然要用链表节点来模拟矩阵中的非零元素,肯定需要如下5个元素(row,col,val,down,right),其中:row:矩阵中的行。col:矩阵中的列。val:矩阵中的值。right:指向右侧的一个非零元素。down:指向下侧的一个非零元素。翻译 2018-01-24 07:56:43 · 14973 阅读 · 2 评论 -
经典算法20--三元组
我们知道矩阵是一个非常强大的数据结构,在动态规划以及各种图论算法上都有广泛的应用,当然矩阵有着不足的地方就是空间和时间复杂度都维持在N2上,比如1w个数字建立一个矩阵,在内存中会占用1w*1w=1亿的类型空间,这时就会遇到outofmemory。。。那么面临的一个问题就是如何来压缩矩阵,当然压缩的方式有很多种,这里就介绍一个顺序表的压缩方式:三元组。一:三元组 有时候我们的矩翻译 2018-01-23 08:06:39 · 6040 阅读 · 0 评论 -
经典算法19--双端队列
话说大学的时候老师说妹子比工作重要~,工作可以再换,妹子这个。。。所以。。。这两个月也就一直忙着Fall in love,嗨,慢慢调整心态吧,这篇就选一个简单的数据结构聊一聊,话说有很多数据结构都在玩组合拳,比如说:块状链表,块状数组,当然还有本篇的双端队列,是的,它就是栈和队列的组合体。一:概念 我们知道普通队列是限制级的一端进,另一端出的FIFO形式,栈是一端进出的LI翻译 2018-01-23 08:06:24 · 21769 阅读 · 5 评论 -
经典算法18--外排序
说到排序,大家第一反应基本上是内排序,是的,算法嘛,玩的就是内存,然而内存是有限制的,总有装不下的那一天,此时就可以来玩玩外排序,当然在我看来,外排序考验的是一个程序员的架构能力,而不仅仅局限于排序这个层次。 一:N路归并排序1.概序 我们知道算法中有一种叫做分治思想,一个大问题我们可以采取分而治之,各个突破,当子问题解决了,大问题也就KO了,还有一点我们知道内排序的翻译 2018-01-23 08:06:05 · 348 阅读 · 0 评论 -
经典算法17--Dijkstra算法
或许在生活中,经常会碰到针对某一个问题,在众多的限制条件下,如何去寻找一个最优解?可能大家想到了很多诸如“线性规划”,“动态规划”这些经典策略,当然有的问题我们可以用贪心来寻求整体最优解,在图论中一个典型的贪心法求最优解的例子就莫过于“最短路径”的问题。 一:概序 从下图中我要寻找V0到V3的最短路径,你会发现通往他们的两点路径有很多:V0->V4->V3,V0->V1->V3翻译 2018-01-23 08:05:44 · 199 阅读 · 0 评论 -
经典算法16--Kruskal算法
这篇我们看看第二种生成树的Kruskal算法,这个算法的魅力在于我们可以打一下算法和数据结构的组合拳,很有意思的。一:思想 若存在M={0,1,2,3,4,5}这样6个节点,我们知道Prim算法构建生成树是从”顶点”这个角度来思考的,然后采用“贪心思想”来一步步扩大化,最后形成整体最优解,而Kruskal算法有点意思,它是站在”边“这个角度在思考的,首先我有两个集合。1. 顶翻译 2018-01-23 08:05:24 · 210 阅读 · 0 评论 -
经典算法15--并查集
这一篇我们看看经典又神奇的并查集,顾名思义就是并起来查,可用于处理一些不相交集合的秒杀。一:场景 有时候我们会遇到这样的场景,比如:M={1,4,6,8},N={2,4,5,7},我的需求就是判断{1,2}是否属于同一个集合,当然实现方法有很多,一般情况下,普通青年会做出O(MN)的复杂度,那么有没有更轻量级的复杂度呢?嘿嘿,并查集就是用来解决这个问题的。二:操作 从名翻译 2018-01-23 08:05:04 · 313 阅读 · 0 评论 -
经典算法14--Prim算法
图论在数据结构中是非常有趣而复杂的,作为web码农的我,在实际开发中一直没有找到它的使用场景,不像树那样的频繁使用,不过还是准备仔细的把图论全部过一遍。一:最小生成树 图中有一个好玩的东西叫做生成树,就是用边来把所有的顶点联通起来,前提条件是最后形成的联通图中不能存在回路,所以就形成这样一个推理:假设图中的顶点有n个,则生成树的边有n-1条,多一条会存在回路,少一路则不翻译 2018-01-23 08:04:50 · 232 阅读 · 0 评论 -
经典算法13--赫夫曼树
赫夫曼树又称最优二叉树,也就是带权路径最短的树,对于赫夫曼树,我想大家对它是非常的熟悉,也知道它的应用场景,但是有没有自己亲手写过,这个我就不清楚了,不管以前写没写,这一篇我们来玩一把。一:概念 赫夫曼树里面有几个概念,也是非常简单的,先来看下面的图:1. 基础概念 节点的权: 节点中红色部分就是权,在实际应用中,我们用“字符”出现的次数作为权。 路径长度:可以理解翻译 2018-01-23 08:04:30 · 193 阅读 · 0 评论