大语言模型(LLM)正在引领人工智能领域的革命,从智能聊天机器人到数据分析,LLM都扮演着核心角色。无论你是初学者还是想要提升知识,这10个免费资源将帮助你深入了解LLM世界,提高你的综合技能和AI实践能力。
学习目标
-
发现10个免费学习LLM的资源
-
了解每个资源的优势
-
找到最适合你学习风格的资源
-
获取涵盖LLM基础知识的材料
-
通过免费课程和材料探索LLM的高级主题
目录
-
Cohere的LLM大学
-
Hugging Face NLP课程
-
MIT OpenCourseWare:高级自然语言处理
-
YouTube频道:Sentdex
-
FreeCodeCamp的NLP教程
-
Analytics Vidhya博客
-
LLMOps
-
LLM训练营
-
Google Cloud的大语言模型入门
-
微调大语言模型
1. Cohere的LLM大学
Cohere的LLM大学提供了专门的LLM学习方法。该平台提供深入的教程、网络研讨会和项目,重点关注LLM在各种应用中的实施。
-
主要内容:模型架构、微调、高级NLP技术
-
特色:行业专家主持的网络研讨会、实践项目、认证
-
目标受众:高级学习者和专业人士
https://cohere.com/llm-university
2. Hugging Face NLP课程
Hugging Face是NLP领域的主要参与者,是开源库和模型的存储库。它提供了一个全面的NLP课程,涵盖了从标记化到大规模模型部署的所有内容。
-
主要内容:标记化、模型训练、Transformers、部署
-
特色:交互式笔记本、社区支持、预训练模型访问
-
目标受众:具有一些NLP背景的中级学习者
https://huggingface.co/learn/nlp-course
3. MIT OpenCourseWare:高级自然语言处理
麻省理工学院的OpenCourseWare项目提供了一门免费的高级NLP课程,深入探讨了LLM的技术细节。
-
主要内容:NLP深度学习、句法分析、机器翻译
-
特色:严谨的学术内容、作业和测验
-
目标受众:高级学习者和学者
https://ocw.mit.edu/courses/6-864-advanced-natural-language-processing-fall-2005/
4. YouTube频道:Sentdex
Sentdex是一个提供机器学习、深度学习和NLP教程的YouTube频道。该频道的LLM内容对时间有限的学习者和喜欢视频课程的人很有帮助。
-
主要内容:LLM实现、Python编码、实际应用
-
特色:视频教程、实践编码课程、社区互动
-
目标受众:初学者到中级学习者
https://www.youtube.com/user/sentdex
5. FreeCodeCamp的NLP教程
FreeCodeCamp以其高质量的免费编程教程而闻名,他们的NLP教程也不例外。这个资源提供了从NLP入门到LLM等主题的一系列教程。
-
主要内容:NLP基础、LLM、实践编码练习
-
特色:自定进度学习、互动练习、社区支持
-
目标受众:初学者到中级学习者
https://www.freecodecamp.org/news/tag/nlp/
6. Analytics Vidhya博客
Analytics Vidhya的博客部分包含了关于LLM的综合文章,为数据科学爱好者提供了丰富的信息。
-
主要内容:LLM案例研究、教程、行业应用
-
特色:详细文章、真实案例研究、社区讨论
-
目标受众:中级到高级学习者
https://www.analyticsvidhya.com/blog/
7. LLMOps
LLMOps是一个专注于LLM管理和部署操作方面的平台。这个资源特别适合那些对大规模运行LLM的实际操作感兴趣的人。
-
主要内容:LLM部署、监控、扩展
-
特色:关注操作方面、实践教程、行业用例
-
目标受众:专业人士和高级学习者
https://llmops.com/
8. LLM训练营
LLM训练营是一个密集的LLM学习项目,旨在让参与者全面了解LLM生态系统。
-
主要内容:NLP基础、模型微调、部署策略
-
特色:基于项目的学习、认证、专家指导
-
目标受众:中级到高级学习者
https://fullstackdeeplearning.com/llm-bootcamp/
9. Google Cloud的大语言模型入门
Google Cloud提供了一个全面的LLM入门课程。这个资源非常适合那些想从云计算角度理解LLM的人。
-
主要内容:LLM基础、基于云的实现、Google Cloud工具
-
特色:云端内容、实践实验室、与Google Cloud集成
-
目标受众:对云计算感兴趣的初学者到中级学习者
https://www.cloudskillsboost.google/course_templates/539
10. 微调大语言模型
"微调大语言模型"课程涵盖了LLM微调的核心原则,并将其与提示工程区分开来。
-
主要内容:微调基础、与提示工程的区别、实际数据应用、优化策略
-
特色:使用真实数据集的实践、明确区分微调和提示工程、模型定制的实用技术、注重实际应用
-
目标受众:AI爱好者、数据科学家、机器学习工程师和希望增强LLM并将微调方法应用到项目中的开发人员
https://www.deeplearning.ai/short-courses/finetuning-large-language-models/
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓