最近,人工智能大模型火得一塌糊涂,各种新名词也层出不穷:RAG、Agent、微调、提示词工程……是不是听着就头大?别担心,今天咱们就用大白话,把这些概念一次性讲清楚,让你彻底搞懂它们是什么、有什么用,以及它们之间的区别和联系。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
一、RAG:给大模型装上“外挂知识库”,让它秒变“百事通”
想象一下,你正用一个智能聊天机器人咨询问题。它虽聪明,但毕竟知识有限,很多最新信息或公司内部资料,它可能一问三不知。这时怎么办呢?
RAG(Retrieval-Augmented Generation,检索增强生成)技术就派上用场了。简单来说,RAG 就像给大模型装了一个“外挂知识库”。当用户提问时,RAG 首先 会从这个知识库里快速搜索相关信息, 然后 将搜到的信息与大模型原本的知识结合,生成一个更全面、更准确的回答。
举个更具体的例子: 假设你是一家电商公司的产品经理,想让客服机器人回答用户关于退货政策的问题。公司退货政策常更新,把最新政策写死在机器人里,麻烦又易过时。
有了 RAG,你可以把最新退货政策文档放到一个知识库。当用户问“7天无理由退货,具体怎么操作?”后:
看到了吧?RAG 的妙处在于,它无需重新训练大模型,就能让它拥有最新知识。这就像给大模型配了位“知识秘书”,随时提供最新情报。
二、Agent:能独立思考、规划行动的“智能项目经理”
如果说 RAG 是给大模型配了位“知识秘书”,那么 Agent(智能体)就是给它配了位“智能项目经理”。Agent 不仅能回答问题,还能自主规划、执行复杂任务。
Agent 更像一个独立的“数字大脑”。它能理解你的目标,制定计划,调用各种工具(如 API、软件、数据库),一步步完成任务,最终给你一个满意的结果。
换个更生活化的例子: 假设你想周末去郊游,可以对 Agent 说:“我想周末去郊游,帮我规划一下,最好能避开人群,找个风景优美、适合烧烤的地方。”
Agent 接收指令后:
- 理解目标: 分析你的需求:周末、郊游、避开人群、风景优美、适合烧烤。
- 制定计划: 考虑多个方案,如查询天气预报、搜索周边景点、查看交通路线、比较不同烧烤场地等。
- 调用工具: 使用地图 App 查找景点,使用天气 App 查询天气,使用点评类 App 查看用户评价,甚至使用购票 App 预订门票。
- 执行并反馈:“已为您规划好周末郊游行程:周六前往XX山,那里风景秀丽,游客较少,有专门的烧烤区。已为您查询天气,周六晴,气温适宜。已为您预订好门票……”
Agent 的核心在于自主性和规划能力。它不仅是个工具,更是个能独立思考、完成任务的“数字助手”。
三、微调:让大模型更懂你的“专业课”,成为领域专家
大模型虽强大,但它是个“通才”,在某些专业领域可能不够精通。这时,就需要“微调”(Fine-tuning)来给大模型“开小灶”,让它成为特定领域的专家。
微调,顾名思义,是在预训练好的大模型基础上,用少量特定领域的数据进行“二次训练”。这就像给大模型上了一门“专业课”。通过学习特定领域的数据,大模型能更好地理解和处理该领域的问题。
原理上: 微调并不会完全改变大模型的知识结构,而是在原有基础上,调整部分参数,让模型更适应特定任务。这样做的好处是,既能利用大模型已有的强大能力,又能快速适应新领域,节省大量训练时间和资源。
举个例子: 你是一家律师事务所,想开发一个智能法律咨询系统。你可以用大量法律文书、案例数据对大模型进行微调,让它更懂法律,能更准确地回答用户关于合同纠纷、知识产权等方面的问题,甚至辅助律师起草法律文书。
微调的价值在于,它能让大模型在特定领域变得更专业、更权威。
四、提示词工程:与大模型高效沟通的“艺术”,让它“心领神会”
最后,我们聊聊“提示词工程”(Prompt Engineering)。这可能是最容易被低估,但却至关重要的一环。
提示词工程,简单说,就是如何给大模型“下指令”。一个好的提示词,能让大模型更好理解你的意图,给出更符合预期的回答。这就像与人沟通,清晰、明确的表达才能获得更好的回应。
技巧有很多:
- 明确指令: 告诉大模型你要做什么,例如“写一篇关于……的文章”、“总结以下内容”、“翻译这段话”。
- 提供背景: 告诉大模型相关上下文,例如“假设你是一位……专家”、“这篇文章是写给……读者看的”。
- 限定范围: 告诉大模型输出的格式、长度、风格等,例如“用表格形式呈现”、“不超过500字”、“语气幽默”。
- Few-shot 示例: 给大模型提供几个例子,让它模仿,例如“请按照以下格式写:问题:…… 回答:……”
- 引导式提问: 将复杂问题拆解为多个小问题,逐步引导大模型思考,例如“先分析……的原因,再提出……的建议”。
举个例子: 你想让大模型生成一段产品介绍。
- 糟糕的提示词: “介绍一下这款产品。”
- 优秀的提示词: “假设你是一位资深产品经理,请为一款名为‘智能助手’的AI软件撰写一段产品介绍,面向潜在客户,强调其核心功能(任务管理、日程安排、智能提醒)、优势(提高效率、减少遗漏)和适用场景(职场人士、学生)。字数在200字左右。”
提示词工程的应用场景非常广泛, 不仅仅是问答, 还可以用于代码生成, 创意写作,文本摘要, 机器翻译等等。
提示词工程是“与大模型对话的艺术”。精心设计提示词,就能引导它产出你想要的内容。
RAG、Agent、微调和提示词工程,这四大技术,如同大模型的“四大护法”,各司其职,又协同作战。
- RAG 负责提供外部知识,让大模型“博闻强识”。
- Agent 负责自主规划执行,让大模型“知行合一”。
- 微调 负责深耕专业领域,让大模型“术业专攻”。
- 提示词工程 负责优化沟通,让大模型“心有灵犀”。
在实际应用中,这些技术常结合使用,发挥1+1>2的效果。一个智能客服系统,可能同时用到RAG获取最新产品信息,微调提升对客户问题的理解,Agent处理复杂售后,提示词工程优化沟通。
大模型技术的发展日新月异,这些技术只是冰山一角。未来,随着技术的进步,大模型将更智能、更强大,它们与人类的协作也将更紧密。
这不仅仅是技术的变革,更是生产力、生活方式的变革。让我们拭目以待,迎接一个更智能、更美好的未来!
驾驭大模型的关键,在于理解它们,并学会与它们“对话”。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓