卷积复杂度计算、im2col算法、Normalization【实现方法解析】

本文深入探讨了深度学习中卷积操作的复杂度计算,包括普通卷积与深度卷积的比较,并详细解析了im2col算法在卷积实现中的作用。此外,文章还介绍了Batch Norm、Layer Norm和Group Norm三种归一化方法,分析了它们的工作原理和优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:dw conv与普通conv 理论计算复杂度

举例如下:

卷积1:普通卷积,输入为64*64*256,输出为64*64*256,卷积核大小为3*3。

参数为3*3*256*256=590K,计算量为64*64*256*3*3*256=2.42G,计算过程的memory access量(输入输出数据+参数)为64*64*256*2 + 3*3*256*256 = 2.69M。

卷积2:dw卷积,输入为64*64*256,输出为64*64*256,卷积核大小为3*3。

参数为3*3*256=2.3K个,计算量为64*64*256*3*3=9.44M,计算过程的memory access量为64*64*256*2 + 3*3*256=2.10M。

卷积3:普通卷积,输入为64*64*16,输出为64*64*16,卷积核大小为3*3。

参数为3*3*16*16=2.3K个,计算量为64*64*16*3*3*16=9.44M&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiangyong58

喝杯茶还能肝到天亮,共同进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值