Eye tracker accuracy and precision

原创 2018年04月15日 10:21:42

一个研究者的眼动跟踪方案:Yuta Itoh (伊藤 勇太)

(http://campar.in.tum.de/Main/YutaItoh Fellow at the Chair for Computer Aided Medical Procedures & Augmented Reality, Munich, Germany

http://www.ar.c.titech.ac.jp/cpt_people/yuta-itoh/ principal investigator of Augmented Vision Lab 東京工業大学 情報理工学院)


Conference on Human Factors in Computing Systems 2017 paper: 

Toward Everyday Gaze Input: Accuracy and Precision of Eye Tracking and Implications for Design (2017)



tobii:Eye tracker accuracy and precision


Accuracy and precision are important concepts for understanding how an eye tracker performs, and how can one evaluate the quality of the recorded eye tracking data.

During data collection, accuracy and precision are used as indicators of the eye tracker data validity. A system with good accuracy and precision will provide more valid data as it is able to truthfully describe the location of a person’s gaze on a screen. Accuracy is defined as the average difference between the real stimuli position and the measured gaze position. Precision is defined as the ability of the eye tracker to reliably reproduce the same gaze point measurement, i.e. it measures the variation of the recorded data via the Root Mean Square (RMS) of successive samples. 

The required level of accuracy and precision depends on the nature of the eye tracking study. Small uncertainties, for instance, can be critical when analyzing gaze data in reading studies or studies with a small stimulus. 

The accuracy error varies considerably across participants and experimental conditions. Accuracy is dependent on participant properties, illumination in the test environment, stimuli properties, calibration quality, data collection procedure and the eyes’ position in the track box.  

Impact of large accuracy & precision errors

Aga Bojko's Blog:The Most Precise (or Most Accurate?) Eye Tracker


(Re-post from the “Eye Tracking the User Experience” Blog.  Aga is currently writing Eye Tracking the User Experience, A Practical Guide, to be published by Rosenfeld Media in 2013.)

To keep up with the developments in research and technology, I have a Google Alert set up for “eye tracking” OR “eyetracking” OR “eye-tracking.” The daily email comes to my Inbox at 11:30am, just in time for my browsing lunch (more fun than a working lunch, less fun than a non-working lunch). Today, nine out of the twenty results in the alert email mentioned Tobii Technology introducing the “most precise eye tracking solution” for mobile device testing:

google alert

Most precise! Who could resist that?

The solution (Tobii Mobile Device Stand) described in the articles is actually quite clever. I’m not sure why it made the news today because it’s been available for a while now. Maybe it was just this morning when they found it was “most precise.” I continued reading in suspense.

To my disappointment, no explanation was offered for how this conclusion was reached. What’s more, I don’t even know what was meant by “precise.” I think the author was referring to the accuracy of the eye tracking solution but I can’t be sure. And that’s precisely where the problem lies – in the confusion between precision and accuracy (and people not realizing that there is confusion). Let me explain…

The accuracy of an eye tracker is the average difference between what the eye tracker recorded as the gaze position and what the gaze position actually was. We want this offset to be as small as possible but it is obviously unrealistic to expect it to be equal to zero.

Accuracy is measured in degrees of visual angle. Typical accuracy values fall in a range between 0.5 and 1 degree. To give you an idea of what that means, one degree corresponds to half an inch (1.2 cm) on a computer monitor viewed at a distance of 27 inches (68.6 cm). In other words, the actual gaze location could be anywhere within a radius of 0.5 inch (the blue circle below) from the gaze location recorded with an eye tracker with one degree of accuracy (the “X”):
Accuracy values reported in eye tracker manuals are measured under ideal conditions, which typically include, for example, testing participants with no corrective eyewear and taking the measurement immediately after calibration. During “real research,” the difference between the reported and actual gaze locations can be larger for participants wearing glasses or contact lenses or those who moved at some point following the calibration procedure.

Precision (aka “spatial resolution”), on the other hand, is a measure of how well the eye tracker is able to reliably reproduce a measurement. Ideally, if the eye is in the same exact location in two successive measurements, the eye tracker should report the two locations as identical. That would be perfect precision.

In reality, precision values of currently available eye trackers range from 0.01 to 1 degree. These values are calculated as the root mean square of the distance (in degrees of visual angle) between successive samples. Because the precision values reported by manufacturers are measured using a motionless artificial eye (pretty cool, huh?), tracking real eyes will exhibit less precision.

The table below summarizes the relationship between eye tracking accuracy and precision. The cross indicates the actual gaze location, while the dots are gaze locations reported by the eye tracker.

Accuracy Precision Table

All in all, the “most precise eye tracking solution” was probably just a poor choice of words but it gave me an excuse to talk about precision vs. accuracy and sound like I’m up to date on current events. I do what I can.

Tristan Hume's report: Eye Tracker Reviews: Pupil Labs, Tobii, Eye Tribe, XLabs


版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xiangz_csdn/article/details/79945519

Accuracy and precision 意义

  • wokaowokaowokao12345
  • wokaowokaowokao12345
  • 2017-06-01 13:10:29
  • 733


一些术语对于一个二分类问题,我们定义如下指标: TPTP:True Positive,即正确预测出的正样本个数 FPFP:False Positive,即错误预测出的正样本个数(本来是负样本,被我们预...
  • luo123n
  • luo123n
  • 2016-02-27 10:35:59
  • 10776


相信大家在阅读数据手册的时候都看到Accuracy和Precision这两个词,你能否准确的区别它们,这样能够让你更好的理解数据手册的定义。 Accuracy Accuracy is...
  • chl033
  • chl033
  • 2009-11-22 13:59:00
  • 8547

机器学习中的 precision、recall、accuracy、F1 Score

1. 四个概念定义:TP、FP、TN、FN先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,Fa...
  • simplelovecs
  • simplelovecs
  • 2016-01-14 22:16:46
  • 7269


  • ybdesire
  • ybdesire
  • 2016-12-13 21:32:46
  • 6601


roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。 横轴:负正类率(false postive rate...
  • qq_28357683
  • qq_28357683
  • 2017-03-01 09:26:47
  • 416

结合源码分析Spark中的Accuracy(准确率), Precision(精确率), 和F1-Measure

转载请标明出处:小帆的帆的专栏例子某大学一个系,总共100人,其中男90人,女10人,现在根据每个人的特征,预测性别Accuracy(准确率)Accuracy=预测正确的数量需要预测的总数 Accur...
  • wo334499
  • wo334499
  • 2016-06-16 09:44:39
  • 14224


机器学习常见评价指标:AUC、Precision、Recall、F-measure、Accuracy 主要内容 AUC的计算 Precision、Recall、F-measure、Accuracy的...
  • zhihua_oba
  • zhihua_oba
  • 2017-11-30 16:11:00
  • 914

准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure,confusion matrix

  • neilol
  • neilol
  • 2015-09-04 17:46:30
  • 2008

【机器学习理论】第6部分 准确率Accuracy,精确度Precision,召回率Recall,F-Score

准确率和召回率是用于信息检索和统计学分类领域的两个度量值,用于评价结果的质量,在机器学习中对于数据进行预测的过程中,同样的使用这些指标来评价预测的结果的质量。 准确率是检索出相关文档数与检索...
  • kevinelstri
  • kevinelstri
  • 2017-03-09 14:15:39
  • 2282
您举报文章:Eye tracker accuracy and precision