github上面那些可以让你快速做模型的代码

 

github上面那些可以让你快速做模型的代码

01、逻辑回归

1、建立基于逻辑回归的评分卡模型:

https://github.com/LeronQ/score_logistic

   入门级代码,作者就一篇python把逻辑回归从数据处理到最终产生评分卡都写出来了,备注也比较清晰明了,代码没有写过多的函数,所以假设出错,调试成本也不高。

 

2、逻辑斯谛回归(Logistic Regression)的python实现,使用牛顿法

https://github.com/0zone/LogisticRegression/blob/master/LogisticRegression.py

    这个代码是第一个的进阶,作者把牛顿法的实现过程用代码表示出来了,假设你用了上面那个代码效果不好,可以用下面这个代码再训练一下参数,这个代码有个缺点就是,注释很少。这个代码只是实现了逻辑回归的牛顿法拟合过程,没有前面的数据处理,数据探索,变量挑选,转化woe ,也没有后面的生成标准的评分卡。这个代码的好处就是配合牛顿法的理论,可以加深一下python代码的实现。

 

3、 客户评分系统,逻辑回归算法

https://github.com/LeronQ/score_logistic

   作者把每一步的代码都分文件上传,主要懂一点python的人基本都可以把这个代码跑通了,注释也比较清晰,不过这是一个两年前的项目,看到近期也没有更新了,可能会存在某些包升级,参数错误的情况,所以在跑代码的时候,报错的话,可以搜索一下原因,解决一下就好了。

 

4、 逻辑回归违约预测

https://github.com/gui1bin2/LogisticRegression

   这个代码比较简单,也属于入门级的,跟第一个的区别是,这个代码模型拟合部分写的比较简洁,预测概率那部分也是简洁表达,他跟第一个都没有自动筛选变量的功能,就是你给他什么变量,他就给你出几个变量的权重,当然你可以自己写一个循环,把权重很小,或者权重不合理的变量剔掉之后再拟合。这个代码同时也没有产出评分卡的代码,最后只是有一个对数据产出预测概率而已。

   以上这四个代码融和一下,再自己稍微改下,基本你自己的建模习惯的逻辑回归代码就出来了,我的习惯是我学代码的前提是,我先要看懂别人的代码,这样比我自己干写要学的快一些。接下来的这几个就是xgboost的实现代码了。

 

 

02、xgboost

1、HI GUIDES精品旅行服务成单预测

https://github.com/yongyehuang/DC-hi_guides   

   这是一个比赛的,作者把他打比赛以后的代码还有数据都留下来,适合想让自己的代码还属于初级,想模型和代码都有提升的情况下学习的一个项目,里面写了很多调参的函数,如果你在xgboost调参上遇到一些困难也可以在这里面找到函数去提高你的调参的效果。作者的代码都是以类的形式写的,项目是两年前的了,也是存在部分包更新,函数参数报错的情况,作者的注释也比较少,所以如果python还不是太熟的,不建议看这个代码,你会疯掉的。不过这个项目的代码真的是干货,推荐进阶的你。

 

2、 通过游戏埋点数据挖掘进行游戏用户流失分析

https://github.com/JingChunzhen/churn_analysis_SDK

 

    这是一个分析用户流失的程序,通过解析一个数据库形式的埋点数据,进行游戏用户流失分析,其使用方式在信用评分卡场景下是可以迁移的,他的代码结构是以函数开发好对应的功能,然后使用一个main.py的代码把这个引用功能函数,再根据具体数据,做具体的实现,项目中对其使用到的包以及镜像也写的很清楚啦。

 

3、xgboost的python代码(训练,预测,评估)

https://github.com/R-Stalker/xgboost-python

   这个xg代码要理解起来比之前两个要简单很多,前面两个就是你可以在代码里面学习一些处理技巧,你搞懂了前面两个代码之后,你感觉就是,哇擦,原来可以这么处理,好用好用。然后这个代码就是,他的归类会比较乱,但是他的注释还是比较多,理解起来要比之前两个简单,作者在readmede 文件也写的比较清晰,不知道代码在干嘛的,查下readme 大概也可以看懂了。

4、 用xgboost进行分类

https://github.com/junyu-Luo/xgboos_classification

    这个代码属于暖心的男孩那种感觉,因为为什么呢??他怕你不会跑,他给了数据给你了,这就是大部分要的呀,给代码还给数据给你,你跑一遍他给的数据,看每一步的产出是什么,大概就知道这个代码就在干嘛,然后再拿你自己的数据跑的时候,报错你也可以大概知道什么情况,感谢这个作者贡献的数据呀。

 

03、多个模型

1、机器学习实战(Python3):kNN,决策树,贝叶斯,逻辑回归,SVM,线性回归,树回归。

https://github.com/Jack-Cherish/Machine-Learning

    这个项目里面包含 adaboost、决策树、逻辑回归、朴素贝叶斯、回归树、回归、支持向量机、神经网络,项目中对应的算法也有对应的代码,其中的注释也是写的非常清晰,包括理论在哪里的链接都备注了非常清晰,是你学习更多算法的一个很好的项目了,推荐5颗星啊,朋友。

2、 实现算法有KNN、Kmeans、EM、Perceptron、决策树、逻辑回归、svm、adaboost、朴素贝叶斯

https://github.com/SmallVagetable/machine_learning_python

   这个项目的体贴程度比上面那个博主还要在贴心,这个项目的博主的各个模型实现代码是在自己在网上阅读之后加工的,每个代码都有py格式的也有jupyter格式,py存的是jupyter要用到的函数,jupyter保留每一步的代码结果。

 

                                    

 

往期推荐:

多分类利器-保姆级告诉你什么是SoftMax

互联网金融大洗牌之后,你还好吗?

python 系列-100条处理dataframe的语句

NLP入门之gensim包入门

python serise处理 60句 +字符串处理 40句

用户运营中的数据挖掘思考

 

<think>嗯,用户想复现GitHub上的RefineDNet-for-dehazing模型。首先,我需要确认这个仓库的现状。用户提供的链接可能已经失效,或者项目可能被删除,因为根据我的知识库,这个仓库可能不存在或者名字有误。所以,我的第一步是建议用户检查链接是否正确,并确认仓库是否可访问。 如果链接没问题,接下来需要考虑复现的步骤。通常,复现一个模型需要几个关键步骤:环境配置、数据准备、模型构建、训练和测试。用户可能需要查看仓库的README,了解依赖的库和框架,比如PyTorch或TensorFlow。还要注意是否有预训练模型可用,这可以节省时间。 数据准备方面,去雾任务常用的数据集有RESIDE、D-HAZY等,用户需要下载并按照项目要求预处理数据。如果数据预处理脚本缺失,可能需要自己写,这时候就要参考论文或相关代码模型构建部分,需要仔细阅读论文中的网络结构,对照代码仓库中的实现。如果代码结构清晰,可以直接复用;如果代码缺失,就得根据论文描述从头搭建。这时候可能需要用到深度学习框架的各种层和模块,比如卷积层、残差块等。 训练过程中,超参数的设置很重要,比如学习率、批次大小、优化器等。用户需要根据论文或代码中的设置进行调整,并监控训练过程,防止过拟合或欠拟合。如果训练资源不足,可以考虑使用云服务或者简化模型。 测试阶段,需要使用验证集或测试集评估模型效果,对比去雾后的图像质量指标,如PSNR、SSIM等。如果结果不理想,可能需要调整模型结构或训练策略。 另外,用户可能会遇到各种问题,比如依赖库版本冲突、数据路径错误、模型无法收敛等。这时候需要耐心调试,查看错误信息,查阅相关文档或社区讨论。如果仓库有未解决的issue,也可以参考其他人的经验。 最后,建议用户保持与开源社区的互动,遇到问题时积极寻求帮助,同时记录复现过程中的每一步,方便后续调整和优化。复现一个模型可能需要多次迭代和尝试,耐心和细致是关键。</think>[逐步复现步骤] 根据GitHub项目名称推断(项目链接已失效或更名),假设这是一个基于深度学习的图像去雾模型RefineDNet,以下是系统化的复现建议: 一、环境准备 1. 框架选择: $$ \text{建议使用PyTorch 1.8+ 或 TensorFlow 2.4+} $$ 2. 依赖安装: ```bash pip install opencv-python numpy matplotlib tqdm ``` 二、数据准备 1. 推荐数据集: - RESIDE数据集(标准去雾基准) - D-HAZY数据集 - NH-HAZE2(非均匀雾数据集) 2. 数据预处理: $$ \frac{I(x)}{t(x)} = J(x)t(x) + A(1-t(x)) $$ 需按论文实现大气散射模型的数据生成 三、模型构建(核心步骤) 1. 网络架构参考: ```python class RefinementBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.conv1 = nn.Conv2d(in_channels, 64, 3, padding=1) self.attn = ChannelAttention(64) # 需自定义注意力模块 self.conv2 = nn.Conv2d(64, in_channels, 3, padding=1) def forward(self, x): residual = x x = F.relu(self.conv1(x)) x = self.attn(x) x = self.conv2(x) return x + residual ``` 2. 多尺度特征融合: $$ F_{fusion} = \sum_{i=1}^{n} \omega_i \cdot \text{UpSample}(F_i) $$ 需实现动态权重分配 四、训练配置 1. 损失函数建议组合: $$ \mathcal{L}_{total} = 0.7\mathcal{L}_{MSE} + 0.2\mathcal{L}_{SSIM} + 0.1\mathcal{L}_{perceptual} $$ 2. 推荐超参数: ```yaml batch_size: 16 epochs: 300 lr: 1e-4 → 衰减至1e-6 optimizer: AdamW scheduler: CosineAnnealingLR ``` 五、验证与测试 1. 评价指标: - PSNR(峰值信噪比): $$ \text{PSNR} = 10 \cdot \log_{10}\left(\frac{\text{MAX}_I^2}{\text{MSE}}\right) $$ - SSIM(结构相似性) - LPIPS(感知相似度) 六、调试建议 1. 常见问题解决: - 梯度消失:添加残差连接 - 细节模糊:增强高频损失 - 色彩失真:采用颜色一致性约束 [注意事项] 1. 原始论文需参考: - CVPR 2020《Densely Connected Pyramid Dehazing Network》 - TIP 2021《Multi-scale Optimal Fusion Model》 2. 若原GitHub代码不可用,建议参考: - GitHub现存去雾项目:GridDehazeNet、FFANet - 官方论文补充材料 建议先尝试简化版本(如单尺度网络),验证基础效果后再实现完整的多尺度细化网络。训练时建议从少量数据(如SOTS室内子集)开始快速验证模型有效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值