图像金字塔概念
1.我们在图像处理中常常会调整图像大小,最常见的就是放大(zoom in)和缩小(zoom out),尽管几何变换也可以实现图像放大和缩小,但是这里我们介绍图像金字塔
2. 一个图像金字塔式一系列的图像组成,最底下一张是图像尺寸最大,最上方的图像尺寸最小,从空间上从上向下看就想一个古代的金字塔。
图像金字塔概念 – 高斯金字塔
高斯金子塔是从底向上,逐层降采样得到。
降采样之后图像大小是原图像MxN的M/2 x N/2 ,就是对原图像删除偶数行与列,即得到降采样之后上一层的图片。
高斯金子塔的生成过程分为两步:
- 对当前层进行高斯模糊
- 删除当前层的偶数行与列
即可得到上一层的图像,这样上一层跟下一层相比,都只有它的1/4大小。
高斯不同(Difference of Gaussian-DOG)
定义:就是把同一张图像在不同的参数下做高斯模糊之后的结果相减,得到的输出图像。称为高斯不同(DOG)
高斯不同是图像的内在特征,在灰度图像增强、角点检测中经常用到。
代码:
#include <opencv2\opencv.hpp>
using namespace cv;
using namespace std;
Mat src;
Mat dst;
int main()
{
src = imread("D:/opencvSRC/test.jpg");
if (!src.data) {
printf("load image error!\n");
return -1;
}
namedWindow("src", CV_WINDOW_AUTOSIZE);
imshow("src", src);
//上采样,放大
Mat up;
pyrUp(src, up, Size(src.cols * 2, src.rows * 2));
imshow("up", up);
//下采样,缩小
Mat down;
pyrDown(src, down, Size(src.cols / 2, src.rows / 2));
imshow("down", down);
//DOG
Mat gSrc, g1, g2, dogimg;
cvtColor(src, gSrc, CV_BGR2GRAY);
GaussianBlur(gSrc, g1, Size(5, 5), 0, 0);
GaussianBlur(g1, g2, Size(5, 5), 0, 0);
subtract(g1, g2, dogimg, Mat());
//归一化
normalize(dogimg, dogimg, 255, 0, NORM_MINMAX);
imshow("dogImage", dogimg);
waitKey(0);
return 0;
}
本文介绍了图像金字塔的概念及其应用,并详细解释了高斯金字塔的生成过程。此外,还介绍了高斯不同(DOG)的概念及其实现方法,展示了如何通过代码实现图像的上采样、下采样以及DOG。

770

被折叠的 条评论
为什么被折叠?



