题目描述:把n 个骰子扔在地上,所有骰子朝上一面的点数之和为s,输入n,打印
出s 的所有可能出现的概率
思路:递归一般是自顶向下的分析求解,而循环则是自底向上,占用更少的空间
和更少的时间,性能较好。定义一个二维数组,第一次掷骰子有 6 种可能,第一
个骰子投完的结果存到 probabilities[0];第二次开始掷骰子,在下一循环中,我们
加上一个新骰子,此时和为 n 的骰子出现次数应该等于上一次循环中骰子点数和
为 n-1,n-2,n-3, n-4,n-5,n-6 的次数总和,所以我们把另一个数组的第 n 个数字设
为前一个数组对应 n-1,n-2,n-3,n-4,n-5,n-6 之和。
代码实现:
public Map<Integer, Double> printProbability(int number) {
Map<Integer, Double> probabilityMap = new HashMap<>();
if (number < 1) {
return probabilityMap;
}
int g_maxValue = 6;
int[][] probabilities = new int[2][];
probabilities[0] = new int[g_maxValue * number + 1];
probabilities[1] = new int[g_maxValue * number + 1];
int flag = 0;
// 当第一次抛掷骰子时,有 6 种可能,每种可能出现一次
// 第一个骰子投完的结果存到了 probabilities[0]
for (int i = 1; i <= g_maxValue; i++) {
probabilities[0][i] = 1;
}
//从第二次开始掷骰子,假设第一个数组中的第 n 个数字表示骰子和为 n 出现的次数,
for (int k = 2; k <= number; ++k) {
// 第 k 次掷骰子,和最小为 k,小于 k 的情况是不可能发生的,令不可能发生的次数设置为 0!
for (int i = 0; i < k; ++i) {
probabilities[1 - flag][i] = 0;
}
// 第 k 次掷骰子,和最小为 k,最大为 g_maxValue*k
for (int i = k; i <= g_maxValue * k; ++i) {
// 初始化,因为这个数组要重复使用,上一次的值要清 0
probabilities[1 - flag][i] = 0;
for (int j = 1; j <= i && j <= g_maxValue; ++j) {
probabilities[1 - flag][i] += probabilities[flag][i - j];
}
}
// 若 flag=0,1-flag 用的就是数组 1,而 flag=1,1-flag 用的就是数组 0
flag = 1 - flag;
}
double total = Math.pow(g_maxValue, number);
for (int sum = number; sum <= g_maxValue * number; sum++) {
double ratio = (double) probabilities[flag][sum] / total;
probabilityMap.put(sum, ratio);
}
return probabilityMap;
}