小编有个群193369905,相关毕设也可找群主,里面分享的均是机器视觉的资料。基于图像的人数统计属于模式识别问题,可应用于安防领域。
先放个最近的人数教室人头统计图
前两张效果图为caffe训练完成
看到最近好多留言大多数都是小白学生,一直在留言,所以我又继续更新了一下


传统的方法包括:1)视频捕获;2)目标提取(背景建模、前景分析)——常见方法有高斯背景建模、帧差法、三帧差法等;3)目标识别(模式识别、特征点分析),如人脸识别,头肩部识别等,OpenCV里可以使用Hear特征、级联分类器来进行特征检测;4)目标跟踪——基本方法有直方图特征匹配和运动目标连续性匹配,opencv里可以使用CamShift算法直接对彩色图像进行分析;5)轨迹分析——根据目标的运动轨迹计算目标目标运动方向和位移,判断目标是进入还是离开指定区域,从而对目标进行数目统计。
前段时间我接到一个项目,需要统计公交车的人数,于是我就利用python-opencv对人头统计了一下,然后利用轨迹分析计算目标运动的方向和位移,来判断目标是上公交还是下公交。
下面我先贴出如何利用python-opencv来统计一下图片中的人脸数目吧,人脸检测注释请参考我的上一篇博客:

本文介绍了如何使用OpenCV进行视频里的人数统计,包括人脸检测、目标跟踪和轨迹分析,适用于安防领域的模式识别问题。通过OpenCV的Hear特征、级联分类器进行特征检测,并使用CamShift算法进行目标跟踪。示例展示了图片和视频中的人脸检测效果,提供代码片段供读者参考和实践。
订阅专栏 解锁全文
819

被折叠的 条评论
为什么被折叠?



