【OpenCV实战】基于OpenCV实现人流量统计核心代码(已验证可准确实现计数)

本文介绍了基于OpenCV和深度学习的实时人流量统计方法,通过人体检测、追踪和穿越红线判断来计数。关键在于检测、追踪算法以及优化重复计数的策略,包括时间窗口、追踪ID分配、穿越方向检测等。最后提出了实验和调整以提高计数的准确性和性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,原理介绍

该过程主要基于计算机视觉和深度学习的原理。通过深度学习模型来自动识别和定位图像或视频帧中的人体,然后结合空间位置和时间信息来判断人体是否穿过红线。这种方法具有自动化、高效和准确的特点,可以广泛应用于各种需要监控和计数人流的场景中。

在下面的代码中,我们循环遍历视频中的每个帧,然后进行检测。然后,由于我们仅对人数流量进行计数,因此仅过滤掉人的检测结果。

之后,我们找到检测到的人体的中心,然后在它们穿过人工创建的红线时对它们进行计数。我们可以在下面的视频快照中清楚地看到它们。

在人体检测的基础上,我们需要定义一条红线作为穿越边界。然后,对于每个检测到的人体,我们检查其检测框是否与红线相交或跨越红线。这可以通过比较检测框的坐标和红线的坐标来实现。当检测到一个人体穿过红线时,我们需要进行计数。

一个粗略的参考思路:
在这里插入图片描述

二,参考代码:

要实现通过红线进行人流量计数的功能,你需要先使用OpenCV的深度学习模块进行人体检测,然后追踪人体在视频帧中的位置,并判断他们是否穿过了设定的红线。以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孤舟簔笠翁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值