一,原理介绍
该过程主要基于计算机视觉和深度学习的原理。通过深度学习模型来自动识别和定位图像或视频帧中的人体,然后结合空间位置和时间信息来判断人体是否穿过红线。这种方法具有自动化、高效和准确的特点,可以广泛应用于各种需要监控和计数人流的场景中。
在下面的代码中,我们循环遍历视频中的每个帧,然后进行检测。然后,由于我们仅对人数流量进行计数,因此仅过滤掉人的检测结果。
之后,我们找到检测到的人体的中心,然后在它们穿过人工创建的红线时对它们进行计数。我们可以在下面的视频快照中清楚地看到它们。
在人体检测的基础上,我们需要定义一条红线作为穿越边界。然后,对于每个检测到的人体,我们检查其检测框是否与红线相交或跨越红线。这可以通过比较检测框的坐标和红线的坐标来实现。当检测到一个人体穿过红线时,我们需要进行计数。
一个粗略的参考思路:
二,参考代码:
要实现通过红线进行人流量计数的功能,你需要先使用OpenCV的深度学习模块进行人体检测,然后追踪人体在视频帧中的位置,并判断他们是否穿过了设定的红线。以