AI医药论文解读:Modeling Polypharmacy Side Effects with Graph Convolutional Networks

论文题目 Modeling Polypharmacy Side Effects with Graph Convolutional Networks
中文 使用图卷积网络对多药副作用进行建模
论文出自 Bioinformatics, 2018

目录

一、研究的目的?

二、模型介绍?

三、数据集以及数据处理?

四、图卷积编码器?

五、张量分解解码器?

六、实验结果比较?

七、思考?


一、研究的目的?

  • 对于患有复杂疾病的患者,需要药物组合进行治疗。 然而,多重用药的后果是患者会出现很多不良反应。目前对于药物相互作用的了解是有限的。 因此,发现药物组合间的副作用是一个重要的挑战,对患者的死亡率和发病率具有重大影响。

  • 之前的研究方法仅通过代表相互作用的概率分数来表征药物-药物相互作用,但不能预测副作用的确切类型。

二、模型介绍?

Decagon是一种对多种药物副作用进行建模的方法。

  • 构建了由两种节点(药物、蛋白质)、三种关系(蛋白质-蛋白质相互作用、药物-蛋白质靶标相互作用和多药副作用)的异构图。副作用表示为药物-药物相互作用,其中每个副作用是不同类型的边。

        

  • 节点 C(环丙沙星)靶向四种蛋白质并与其他三种药物相互作用。 C与D或S一起使用会增加心律失常(r2)的风险,并且其与M的组合会有胃出血 r1.

  • 模型结构:

    • 一个编码器:作用在G上的图卷积网络,可以生成G中的节点嵌入。

    • 一个解码器:一个张量分解模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值