论文题目 | Modeling Polypharmacy Side Effects with Graph Convolutional Networks |
中文 | 使用图卷积网络对多药副作用进行建模 |
论文出自 | Bioinformatics, 2018 |
目录
一、研究的目的?
-
对于患有复杂疾病的患者,需要药物组合进行治疗。 然而,多重用药的后果是患者会出现很多不良反应。目前对于药物相互作用的了解是有限的。 因此,发现药物组合间的副作用是一个重要的挑战,对患者的死亡率和发病率具有重大影响。
-
之前的研究方法仅通过代表相互作用的概率分数来表征药物-药物相互作用,但不能预测副作用的确切类型。
二、模型介绍?
Decagon是一种对多种药物副作用进行建模的方法。
-
构建了由两种节点(药物、蛋白质)、三种关系(蛋白质-蛋白质相互作用、药物-蛋白质靶标相互作用和多药副作用)的异构图。副作用表示为药物-药物相互作用,其中每个副作用是不同类型的边。
-
节点 C(环丙沙星)靶向四种蛋白质并与其他三种药物相互作用。 C与D或S一起使用会增加心律失常(r2)的风险,并且其与M的组合会有胃出血 r1.
-
模型结构:
-
一个编码器:作用在G上的图卷积网络,可以生成G中的节点嵌入。
-
一个解码器:一个张量分解模型。
-