AI医药方向论文总结(包含DDI和DDS,重点分析药物联合预测)

本文总结了AI在医药领域预测药物-药物交互(DDI)的方法,包括基于药物结构相似性和图基方法。深度学习模型如DeepDDI、DDI-BLKG、Graph Convolutional Networks等被用于提升预测准确性。此外,还探讨了其他方法,如文本处理和多关系DDI预测。同时,提到了针对药物组合效果预测的DeepSynergy和DeepDDS等模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(提醒:本文模型图只是放了缩略图让大家了解个大概,建议还是看原论文中的模型图。)

现有的DDI预测方法?

DDI预测方法主要分为两类:基于药物结构特征相似性的方法和基于的方法。

1 similarity-based:(假设化学结构相似的药物具有相似的DDI

  • **DeepDDI模型

    Deep learning improves prediction of drug–drug and drug–food interactions.

    Proceedings of the National Academy of Sciences,2018

    这是第一个将深度学习应用于药物预测的模型。利用药物的SMILES数据生成药物对的结构相似性剖面(SSP),然后通过PCA降维将其送入深度神经网络(DNN)进行分类
    在这里插入图片描述

  • DeepDDI模型优化1

Novel deep learning model for more accurate prediction of drug-drug interaction effects

BMC Bioinformatics,2019

在DeepDDI的基础上添加了两个新数据,其方法类似于药物SMILES数据生成的SSP:目标基因数据生成TSP(目标相似性档案)和基因本体(GO)生成GSP(基因本体术语相似性档案)。这三个特征向量通过一个改进的编码器进行降维,然后连接成一个单一的药物对特征向量,放入DNN进行训练。改进后的模型数据量大,精度高。
在这里插入图片描述

  • DeepDDI模型优化2

A multimodal deep learning framework for predictingdrug–drug interaction events

Bioinformatics,2020

在DeepDDI的基础上提出了一个多态性深度学习模型,该模型使用筛选的完整信息进行训练。它可以利用与多种药物相关的信息进行更有效的学习,具有更高的准确性。基于药物特征的方法在已知数据集上具有较高的准确性,但也存在一定的局限性。
在这里插入图片描述

  • DDI
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值