药物组合疗法的机器学习方法(综述类)

本文综述了药物组合疗法的重要性,强调了机器学习在药物组合发现中的作用,以解决实验测试的复杂性和成本。文章讨论了药物组合研究的主要问题,包括寻找作用靶标和预测患者反应,并探讨了多种机器学习方法,如敏感性预测、协同预测和分类。此外,文章介绍了数据源和计算方法,以及现有的在线数据分析平台。尽管面临挑战,如数据维度问题和模型泛化能力,但机器学习为药物组合疗法提供了强大的预测工具,对药物研发具有重要意义。
摘要由CSDN通过智能技术生成
论文题目: Machine learning approaches for drug combination therapies
论文出自: Briefings in Bioinformatics, bbab293

药物组合疗法的研究意义?

  • 药物组合主要针对复杂疾病如癌症等,与单药给药相比,具有药效更强,副作用低等潜在优势。

  • 癌症等复杂疾病的产生发展往往伴随复杂的基因通路改变,因此药物组合可以通过作用于多种通路的多个靶标,发挥更好的治疗效果。

机器学习方法的作用?

  • 药物组合的实验发现十分困难,因为实验测试量巨大,想要针对大量药物测试其在多种癌细胞上的组合效果是目前几乎无法实现的。

  • 因此基于计算机的药物组合发现方法可以辅助这一发现过程,缩短前期筛选时间。

当前针对药物组合研究的主要问题?

(1) 发现药物组合的作用靶标及相关生物标记物,从而发现疾病机理。

(2) 针对病人预测有效的药物组合。

本综述的主要关注点?

(1) 从开发 ML 方法的角度来看药物组合疗法

(2)来自不同来源的数据集成的重要性

(3)提供了一些数据库

 

1 基本概念

  • 药物联合疗法:阐明由治疗反应变化引起的患者的疾病特征,定义协同药物作用并最大程度减少药物不良反应。

    • 优点:与单药给药相比,药物联合疗法可以提高治疗效果、降低毒性并克服耐药性。

    • 面临的难点:药物不良反应、毒性、细胞系异质性

    • 组合药物需解决的问题:

      • 确定可能揭示药物组合潜在机制的预测性生物标志物

      • 如何预测已知或新的药物组合是否对特定患者有用

  • 计算方法

    • 计算方法分类:

      • 系统生物学系的方法

      • 基于网络的方法

      • 基于ML的方法

  • 机器学习方法:可以提供一种有效的策略来克服耐药性和提高治疗效果。

    • 机器学习模型的应用:从大量已批准和研究的化合物中有效地探索药物组合

    • ML方法分类:

      • 药物组合敏感性预测

      • 药物协同预测

      • 药物协同分类

2 药物联合治疗

  • 药物组合效果

    • 协同:当两种化合物的联合作用大于它们的单一药物效力预测的作用时。

    • 相加:每种药物的作用既不减少也不增加单个药物作用的总和。

    • 拮抗:当两种化合物的联合作用总和小于单个药剂的反应。

      协同组合有利于延迟耐药性的开始,拮抗作用更有助于确定毒性水平

  • 敏感性和协同作用的区别:

    • 敏感性是基于细胞系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值