深入浅出GAT–Graph Attention Networks(图注意力模型)

本文详细介绍了GAT(Graph Attention Networks)的起源,针对GCN的局限性,特别是其在处理有向图和inductive任务上的优势。通过mask和global graph attention机制,GAT如何计算注意力系数并融合邻域信息。探讨了GAT与GCN的区别,以及在AI医药领域的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深入浅出GAT–Graph Attention Networks(图注意力模型)

1 GAT的诞生

由深度学习三巨头之一的Yoshua Bengio组提出了Graph Attention Networks(下述简称为GAT)去解决目前GCN存在的问题。

2 关于图

为了更好的引入,我们先来看看图的基础知识~~~
哒哒哒哒哒哒哒~~~~~~~~~~~~~~~~~~~~~~~~~

2.1 图的重要的“两特征”

提及graph,通常是包含着顶点和边的关系。
在这里插入图片描述

  • 第一种特征:对于任意一个顶点 i,它在图上邻居 Ni,构成第一种特征,即图的结构关系。

  • 第二种特征:除了图的结构之外,每个顶点还有自己的特征 hi(通常是一个高维向量)。它可以使社交网络中每个用户的个体属性;可以是生物网络中,每个蛋白质的性质;还可以使交通路网中,每个交叉口的车流量。

2.2 GCN的局限性

GCN是处理transductive任务的一把利器(transductive任务是指:训练阶段与测试阶段都基于同样的图结构),然而GCN有两大局限性是经常被诟病的:

(a)无法完成inductive任务,即处理动态图问题。inductive任务是指:训练阶段与测试阶段需要处理的graph不同。通常是训练阶段只是在子图(subgraph)上进行,测试阶段需要处理未知的顶点。(unseen node)

(b)处理有向图的瓶颈,不容易实现分配不同的学习权重给不同的neighbor。这一点在前面的文章中已经讲过了,不再赘述,如有需要可以参考下面的链接。
解读三种经典GCN中的Parameter Sharing

3 GAT

重点在获取其余节点对本节点的影响上。GAT本质上有两种运算方式,即Mask graph attention or global graph attention。

3.1 Global graph attention

**顾名思义,就是每一个顶点i都对于图上任意顶点都进行attention运算。**可以理解为图1的蓝色顶点对于其余全部顶点进行一遍运算。

优点:完全不依赖于图的结构,对于inductive任务无压力

缺点:(1)丢掉了图结构的这个特征,无异于自废武功,效果可能会很差(2)运算面临着高昂的成本

3.2 Mask graph attention

注意力机制的运算只在邻居顶点上进行,也就是说图1的蓝色顶点只计算和橙色顶点的注意力系数。目前常用方式。

4 输入浅出GAT

叮叮叮叮叮~~~~~~~~
重点来啦!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
和所有的attention mechanism一样,GAT的计算也分为两步走:

4.1 计算注意力系数(attention coefficient)

  • 对于顶点i,逐个计算它的邻居们j和它自己之间的相似系数
    在这里插入图片描述
    解读一下这个公式:首先一个共享参数 w 的线性映射对于顶点的特征进行了增维,当然这是一种常见的特征增强(feature augment)方法;|| 对于顶点i,j的变换后的特征进行了拼接(concatenate);最后 a( )把拼接后的高维特征映射到一个实数上。
  • 有了相关系数,离注意力系数就差归一化了!其实就是用个softmax:
    在这里插入图片描述

4.2 加权求和(aggregate)

现在已经成功一大半了哦~~~~~~~~~
第二步很简单,根据计算好的注意力系数,把特征加权求和(aggregate)一下。

  • GAT输出的对于每个顶点 [公式] 的新特征(融合了邻域信息)
    在这里插入图片描述
  • 式(3)看着还有点单薄,俗话说一个篱笆三个桩,attention得靠multi-head帮!来进化增强一下
    在这里插入图片描述

5 深入理解强化GAT

5.1 与GCN的联系与区别

本质上而言:GCN与GAT都是将邻居顶点的特征聚合到中心顶点上(一种aggregate运算),利用graph上的local stationary学习新的顶点特征表达。不同的是GCN利用了拉普拉斯矩阵,GAT利用attention系数。一定程度上而言,GAT会更强,因为顶点特征之间的相关性被更好地融入到模型中。

5.2 为什么GAT适用于有向图?

最根本的原因是GAT的运算方式是逐顶点的运算(node-wise),这一点可从公式(1)—公式(3)中很明显地看出。每一次运算都需要循环遍历图上的所有顶点来完成。逐顶点运算意味着,摆脱了拉普利矩阵的束缚,使得有向图问题迎刃而解。

5.3 为什么GAT适用于inductive任务?

GAT中重要的学习参数是 W 与 a( ) ,因为上述的逐顶点运算方式,这两个参数仅与1.1节阐述的顶点特征相关,与图的结构毫无关系。所以测试任务中改变图的结构,对于GAT影响并不大。
与此相反的是,GCN是一种全图的计算方式,一次计算就更新全图的节点特征。学习的参数很大程度与图结构相关,这使得GCN在inductive任务上遇到困境。

5.4 GAT在AI医药的应用?

论文链接:Bi-Level Graph Neural Networks for Drug-Drug Interaction Prediction
以后看到再补充~

出现这个错误的原因是在导入seaborn包时,无法从typing模块中导入名为'Protocol'的对象。 解决这个问题的方法有以下几种: 1. 检查你的Python版本是否符合seaborn包的要求,如果不符合,尝试更新Python版本。 2. 检查你的环境中是否安装了typing_extensions包,如果没有安装,可以使用以下命令安装:pip install typing_extensions。 3. 如果你使用的是Python 3.8版本以下的版本,你可以尝试使用typing_extensions包来代替typing模块来解决该问题。 4. 检查你的代码是否正确导入了seaborn包,并且没有其他导入错误。 5. 如果以上方法都无法解决问题,可以尝试在你的代码中使用其他的可替代包或者更新seaborn包的版本来解决该问题。 总结: 出现ImportError: cannot import name 'Protocol' from 'typing'错误的原因可能是由于Python版本不兼容、缺少typing_extensions包或者导入错误等原因造成的。可以根据具体情况尝试上述方法来解决该问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [ImportError: cannot import name ‘Literal‘ from ‘typing‘ (D:\Anaconda\envs\tensorflow\lib\typing....](https://blog.csdn.net/yuhaix/article/details/124528628)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值