第一章
命题:用一个陈述句表示的一个或多个为真为假,但不能同时为真又为假的判断句(或判断结果唯一的陈述句,或客观上存在唯一真值的陈述句)
命题的真值:只能是命题为“真”或“假”
例:(Y、F表示是否是命题)
- 1.北京是中国的首都 Y真
-2.2+3=6 Y假 - 请关上门。 F
- 除地球外的星球有生物 Y 真值确定但未知
- 多漂亮的花啊 F
- 我只给所有不给自己理发的人理发 悖论
命题变量:通常用p、q、r…表示命题变量。命题变量没有真值,只有一个确定的命题后,才有真值。
- 可以用p表示命题“2+3=5”则p是正确的。
简单命题(原子命题):不能分解为更简单的陈述句的命题
简单命题:”北京是中国的首都“
复合命题:有两个或几个简单句和连接词组成的命题。
复合命题:”如果明天天气好,我们就去爬山“
符号命题化:用英文字母或英文字母和连接词的组合表示命题,称为命题符号化。连接词———>连词
连接词
- 否定:(┐)
设p是一个命题,┐p表示一个新命题”非p“,当且仅当p为真时,p为假。
例如:p:今天时晴天 ┐p:今天不是晴天 - 合取(∧)
设p,q表示两个命题,p∧q可表示复合命题,”p且q“。当且仅当p和q的真值时为真时,p∧q真值为真
例如:p:今天是晴天;q:今天去公园 。
p∧q:今天是晴天并且今天去公园。 - 析取(∨)
设p,q表示两个命题,p∨q可表示复合命题,”p或q“。当且仅当q和p同时为假的时候p∨q为假。
例如:p:今天去看电影;q:今天去公园;
p∨q今天去看电影或去公园。
注意:自然语言中的“或”有“可兼或”(同或)和“不可兼或”(异或)两种。析取连接词代表的是可兼或。 异或有时候会用“⊕”来表示。 - 蕴含 (→)
设p,q表示两个命题,p→q可表示复合命题,”如果p则q“。当且仅当p为真,q为假时,p→q的真值为假。
例如:p:今天天气晴朗;q:我们去海滩;
p→q如果今天天气晴朗我们就去海滩。
p:为蕴含前件;q:为蕴含后件
p是q的充分条件,q是p的必要条件 - 等价(↔)
设p,q表示两个命题,p↔q可表示复合命题,”p当且仅当q“。P↔Q为真当且仅当P、Q同时为真假。
例如:p:两个三角形是全等的;q:两个三角形的三条对应边相等
p↔q:”两个三角形是全等的当且仅当两个三角形的三条对应边相等“
优先级
()>>┐>>∧>>∨>>→>>↔
连接词的真值表
命题公式
- 命题常元:代表特定的简单命题
- 命题变元:代表任意命题,取值为真或假的变量
- 命题公式
- 一个含有命题变元的命题公式的真值是不确定的
- 只有当公式中所有的命题变元被指定代表特定的命题时,命题公式才成为真命题,其真值才会被唯一确定。
- 公式的赋值
定义:若命题公式A含有的全部命题变元为p1,p2,p3,p4…pn,给p1,p2,p3,p4…pn指定一组真值,称为为A的一个解释或赋值。使A的真值为真的赋值称为成真赋值,使A的真值为假的赋值为成假赋值。
真值表:命题公式在所有可能的赋值下的取值的列表含n个变形的公式有2的n次方个赋值。
- 命题公式的分类
- 若A在它的各种情况下赋值的取值均为真,则称A为重言式或永真式
- 若A在它的各种情况下赋值的取值均为假,则称A为矛盾式或永假式
- 若至少存在一种赋值能使A的真值为真,则称A为可满足式
等值演算
- 等价关系式
定义:设A和B是两个命题(或命题公式),若A↔B是永真式,命题A和B称为逻辑等价的,可记作A⇔B - 基本等价式
置换规则:若公式G中的一部分A(包含G中的几个连续的符号)是公式,称A为G的子公式;用与A的逻辑等价的公式B置换A不改变公式G的真值。
其他连接词
-
与非
-
或非
-
异或
-
连接词的真值
范式
范式存在定理:任何一个命题公式都存在着与之等价的戏曲范式与合取范式。
- 极小项
含有n个命题变元的合取中,若每个命题变元与其否定不同时出现,而二者之一必须出现且仅出现一次这样的合取式称为极小项 - 极大项
含有n个命题变元的析取中,若每个命题变元与其否定不同时出现,而二者之一必须出现且仅出现一次这样的合取式称为极小项
主析取范式
定义:由若干个不同的小项组成的析取式称为主析取范式,与A等价的主析取范式称为A的主析取范式。
就是析取范式的每一项都必须含有p,q,r;如果哪项没有需要加上缺少的那一项,后续步骤省略了
主合取范式
定义:由若干个不同的小项组成的合取式称为主析取范式,与A等价的主合取范式称为A的主析取范式。
析(合)取的用途
-
判断两个公式是否等价
-
求公式的成真赋值和成假赋值
-
判断公式的类型
含有的极大项(极小项)为2的n次方个
推理逻辑
定义:当A和B是两个命题公式,当且仅当命题A→B是重言式时(即A→B⇔T时)称从A可推出B,或A蕴含B,或B是A的结论,可以表示成A⇒B
推理理论:一般的,推理的前提可以有多个,若(A1∧A2∧…∧An)→B是重言式,则称由前提A1,A2,…,An可推出结论B,可以表示为(A1∧A2∧…∧An)⇒B
推理证明方法
-
推理证明规则
-
例题
-
至此命题结束了是不是很有收获呢?