离散数学 - 第一章 命题和命题公式

该章节介绍了离散数学中的命题和命题公式,包括理解命题概念、判断真值、掌握联结词及其运算次序,以及命题符号化、公式、重言式、矛盾式和可满足式的识别。此外,还涉及了真值表的构造、命题等价性的证明、基本命题定律、蕴涵式的证明和联结词完备集的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一章 命题和命题公式

学习目标

1、理解命题的概念,能够正确的判别什么是命题,并能够给出命题的真值
①具有唯一真值的陈述句称作命题。真值为真的命题称为真命题,真值为假的称为假命题。
②由原子命题通过联结词联结而成的命题,称为复合命题。
2、掌握联结词的定义及运算次序
联结词:

在命题符号化时,‘如果这样的连词将表示为联结词,联结词都具有特定的符号。
由原子命题通过联结词联结而成的命题,称为复合命题

	①否定:设P为命题,P的否定是一个复合命题,记作¬P。 非P
	真值表:	P 	¬P	
			T	F
			F	T
	@合取:设P、Q为两个命题,P和Q的合取是一个复合命题,记作P∧Q(P并且Q)。当且仅当P、Q同时为T时,P∧Q为T
	真值表:	P	Q	P∧Q
			T	T	T
			T	F	F
			F	T	F
			F	F	F	
	③析取:设P、Q为两个命题,P和Q的析取是一个复合命题,记作P∨Q(P或者Q)。当且仅当P、Q同时为F时,P∧Q为F
	真值表:	P	Q	P∨Q
			T	T	T
			T	F	T
			F	T	T
			F	F	F	
	④异或:设P:王小林今天去美国,设Q:王小林今天去欧洲,复合命题中的两个原子命题不会同时成立,他们之间具有相斥性,称为异或。可以表示为(P∧¬Q)∨(¬P∧Q)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值