第一章 命题和命题公式
学习目标
1、理解命题的概念,能够正确的判别什么是命题,并能够给出命题的真值
①具有唯一真值的陈述句称作命题。真值为真的命题称为真命题,真值为假的称为假命题。
②由原子命题通过联结词联结而成的命题,称为复合命题。
2、掌握联结词的定义及运算次序
联结词:
在命题符号化时,‘如果这样的连词将表示为联结词,联结词都具有特定的符号。
由原子命题通过联结词联结而成的命题,称为复合命题
①否定:设P为命题,P的否定是一个复合命题,记作¬P。 非P
真值表: P ¬P
T F
F T
@合取:设P、Q为两个命题,P和Q的合取是一个复合命题,记作P∧Q(P并且Q)。当且仅当P、Q同时为T时,P∧Q为T
真值表: P Q P∧Q
T T T
T F F
F T F
F F F
③析取:设P、Q为两个命题,P和Q的析取是一个复合命题,记作P∨Q(P或者Q)。当且仅当P、Q同时为F时,P∧Q为F
真值表: P Q P∨Q
T T T
T F T
F T T
F F F
④异或:设P:王小林今天去美国,设Q:王小林今天去欧洲,复合命题中的两个原子命题不会同时成立,他们之间具有相斥性,称为异或。可以表示为(P∧¬Q)∨(¬P∧Q)