017:分蛋糕

思路:
动态规划
dp[w][h][m] = 宽为w,高为h的蛋糕切m刀后最大快蛋糕面积的下限

递推公式:
dp[w][h][m] = min(切的第一刀为横的最优解,切的第一刀为竖的最优解)
切的第一刀为横的最优解 = min(s(i))(1<=i<=h-1)
(s(i)表示切完第一刀后上边的蛋糕的高度为i的情况的最优解)

切完第一刀后上边的蛋糕的高度为i的情况的最优解 =
min(max(dp[w][i][k]),dp[w][h-i][m-k])(k表示分配到上面的蛋 糕的刀数)

以此类推

dp数组生成顺序:
h从小到达生成
w,h应该可以任意顺序(未验证)

#include <cstdio>
#include <iostream>
#include <algorithm>
#define INF 0x3f3f3f; 
using namespace std;
int w,h,m;
int dp[30][30][30];
//已经切成了两块蛋糕,分配剩余的刀数
int sx(int i1,int j1,int i2,int j2,int k){
	//按前一个蛋糕分配的刀数分为几种情况
	int d;
	int res;
	for(d=0;d<=k;d++){
		if(d==0){
			res = max(dp[i1][j1][d],dp[i2][j2][k-d]);
		}else{
			res = min(res,max(dp[i1][j1][d],dp[i2][j2][k-d]));
		}
	} 
	return res;
}

//横着切时的情况,分配上下两块蛋糕的高度 
int s1(int i,int j,int k){
	int l;
	int res;
	//按上边的蛋糕的高度分为几种情况
	for(l=1;l<j;l++){
		if(l==1){
			res = sx(i,l,i,j-l,k-1);
		}else{
			res = min(res,sx(i,l,i,j-l,k-1));
		}
	} 
	return res;
}
//竖着切的时候,分配左右两块蛋糕的宽度
int s2(int i,int j,int k){
	int l;
	int res;
	//按左边的蛋糕的宽度分为几种情况
	for(l=1;l<i;l++){
		if(l==1){
			res = sx(l,j,i-l,j,k-1);
		}else{
			res = min(res,sx(l,j,i-l,j,k-1));
		}
	} 
	return res;
}


int ans[1000];
int ans2[1000];
int v = 0;
int main() {
	
	cin>>w>>h>>m;
	while(w!=0||h!=0||m!=0){
		//边界条件
		int i,j,k;
		for(i=1;i<=w;i++){
			for(j=1;j<=h;j++){
				dp[i][j][0] = i*j;
			}
		}
		 
		//通过递推得到dp
		for(k=1;k<=m-1;k++){
			for(i=1;i<=w;i++){
				for(j=1;j<=h;j++){
					if(i*j>k){
						if(i>1&&j>1){
							dp[i][j][k] = min(s1(i,j,k),s2(i,j,k));
						}else if(i>1&&j==1){
							dp[i][j][k] = s2(i,j,k);
						}else if(i==1&&j>1){
							dp[i][j][k] = s1(i,j,k);
						}
					}
				}
			}
		} 
//		for(k=0;k<=m-1;k++){
//			for(i=1;i<=w;i++){
//				for(j=1;j<=h;j++){
//					cout<<i<<" "<<j<<" "<<k<<" "<<dp[i][j][k]<<endl;
//				}
//			}
//		}
//		ans[v] = dp[w][h][m-1];
//		v++;
		cout<<dp[w][h][m-1]<<endl;
		cin>>w>>h>>m;
	}
//	int i;
//	for(i=0;i<v;i++){
//		cin>>ans2[i];
//	}
//	for(i=0;i<v;i++){
//		cout<<i<<" "<<ans[i]<<" "<<ans2[i]<<endl;
//	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值