AI大模型探索之路-训练篇2:大语言模型预训练基础认知

本文详细探讨了大语言模型预训练过程,包括其核心步骤、面临的显存和计算效率挑战,以及网络通信、数据并行、模型并行和3D并行策略。特别介绍了MicrosoftDeepSpeed和NVIDIAMegatron等工具在优化训练中的应用。
摘要由CSDN通过智能技术生成


前言

在人工智能的宏伟蓝图中,大语言模型(LLM)的预训练是构筑智慧之塔的基石。预训练过程通过调整庞大参数空间以吸纳数据中蕴含的知识,为模型赋予从语言理解到文本生成等多样化能力。本文将深入探讨预训练过程中的技术细节、所面临的挑战、通信机制、并行化策略以及如何通过这些技术的融合提升预训练的效率和性能。

一、预训练流程分析

预训练大语言模型涉及对海量参数的优化。这个过程起始于一个简单的前提:

给定输入(X)和相应的输出(Y),模型通过不断迭代学习,不断更新修改参数,使得其生成的输出尽可能接近真实结果(Y)。

当模型输出与实际结果之间的差距—通常由损失函数量化—减小到一个可接受的阈值时,我们可以认为预训练过程达到预期效果。在这个过程中,模型参数经历从随机初始化到精细调整的转变,逐步捕捉并内化语言的复杂规律。
在这里插入图片描述

大语言模型预训练过程核心:
1)输入 Batch 数据
2)前向传播计算损失
3)后向传播计算梯度
4)优化器更新大模型参数
5)反复迭代循环
在这里插入图片描述

二、预训练两大挑战

随着模型规模向百亿甚至千亿参数迈进,预训练任务面临两大主要挑战:
1.显存效率:模型参数量的巨大使得即便是最先进的GPU也难以单独容纳所有参数,这直接导致了显存溢出的问题。例如,一个具有1750亿参数的GPT-3模型,其参数本身就需要消耗约700GB的显存,加上Adam优化器的状态,总共需要超过2.8TB的显存
2.计算效率:巨大的模型参数和海量的训练数据使得计算量激增,导致单机训练时间长达数年,这对于计算资源的有效利用提出了极大的挑战。

三、预训练网络通信

网络通信是多机多GPU预训练过程中不可或缺的环节。点对点通信方式因其一对一的数据交换模式,虽然成本较低,但传输速率较慢,成为速度瓶颈。相对而言,集体通信方式通过同时进行多个进程间的数据传输,大大提升了通信速度,但相应地增加了成本。选择合适的通信方式对于提高预训练效率至关重要。
1.点对点通信:一个进程发送数据,一个进程接收数据,速度慢,成本低。
在这里插入图片描述

2.集体通信:多个进程发送数据,多个进程接收数据,速度快,成本高。

在这里插入图片描述

四、预训练数据并行

1. 数据并行:数据并行是处理大规模数据集的常用策略,它通过将整个数据集分割成多个子集,每张GPU分配一部分数据独立进行模型训练。

在这里插入图片描述

2. 数据并行三个提高效率的技巧
1)梯度分桶:动机是集体通信在大张量上比在小张量上效率更高。
2)计算与通信重叠:有了梯度分桶之后,在等待同一个桶内的梯度计算完后,就可以进行通信操作。
3)跳过梯度同步:梯度累加,减少梯度通信的频次。
在这里插入图片描述

五、预训练模型并行

当单张GPU无法装载整个模型时,模型并行成为解决之道。

1.流水线并行
层间划分,将不同的层划分到不同的 GPU 上;比如:前 3 层在 0 号卡上,后 3 层在 1 号卡上
在这里插入图片描述

2.张量并行
层内划分,切分一个独立的层划分到不同的 GPU 上;比如:0 号卡和 1 号卡分别计算某个层的不同部分
在这里插入图片描述

六、预训练3D并行

3D并行是一种综合性策略,它结合了数据并行、张量并行和流水线并行的优势,以平衡显存利用率和计算效率。在此框架下,每种并行方法承担着不同的角色:数据并行提供高效的计算利用率,张量并行减少单个层的显存占用,而流水线并行则降低跨层通信的频率。

1. 数据并行:计算效率高、实现简单。
• 显存效率:每张卡上都保存了完整的模型、梯度、优化器状态,因此显存效率不高。
• 计算效率:当增加并行度时,单卡的计算量是保持恒定的,可以实现近乎完美的线性扩展。但规约梯度的通信开销,与模型大小成正相关。

2. 张量并行:因模型结构而异,实现难度大。
• 显存效率:随着并行度增加,成比例地减少显存占用。是减少单层神经网络中间激活的唯一方法。
• 计算效率:频繁的通信,限制了两个通信阶段之间的计算量,影响了计算效率,计算效率很低。

3. 流水线并行:通信成本最低
• 显存效率:减少的显存与流水线并行度成正比。但流水线并行不会减少每层中间激活的显存占用。
• 计算效率:成本更低的点对点(P2P)通信。通信量与流水线各个阶段边界的激活值大小成正比。
在这里插入图片描述

4. 3D并行实例
Bloom-176B模型的预训练实施了这种3D并行策略,在NVIDIA A100 GPU上实现了对数万亿Token的训练工作。
在这里插入图片描述

5. 3D 并行训练框架
同时支持数据并行 、流水线并行、张量并行的3D并行训练框架:Microsoft DeepSpeedNVIDIA Megatron
1)Microsoft DeepSpeed:微软开发的优化库,专门用于简化和提高深度学习分布式训练的效率。它通过结合数据并行和其他并行技术,如流水线并行,实现了一种基于3D并行的训练方法。
2)NVIDIA Megatron:由NVIDIA的研究团队开发的一个专为大型Transformer模型设计的训练框架。

七、预训练代码示例

预训练代码简单示例:


import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM

# 加载预训练模型和分词器
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForMaskedLM.from_pretrained(model_name)

# 准备输入数据
input_text = "This is an example sentence."
inputs = tokenizer(input_text, return_tensors="pt")

# 进行前向传播
outputs = model(**inputs)

# 提取预测结果
predictions = outputs.logits

# 输出预测结果
print(predictions)


总结

预训练大语言模型是一项既富有挑战又极具价值的工作。随着模型规模的不断扩大和数据量的激增,如何高效地进行预训练已经成为了AI研究的核心议题。3D并行作为一种先进的预训练框架,不仅解决了单一GPU资源限制的问题,还通过合理的资源分配和优化手段显著提高了预训练的性能。未来的预训练技术将继续沿着这条道路前进,不断探索新的边界,并将机器学习模型推向前所未有的高度。

👉系列篇章:AI大模型探索之路-训练篇1:大语言模型微调基础认知
🔖更多专栏系列文章:AIGC-AI大模型探索之路

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。

预训练蛋白质语言模型是一种通过大规模的蛋白质序列数据进行训练模型,用于预测蛋白质的结构和功能。其中,ProteinLM是Facebook AI Research团队开发的一种蛋白质语言模型。引用\[1\]中的代码展示了如何使用Facebook AI Research团队开发的esm2_t33_650M_UR50D模型进行蛋白质序列的编码和表示学习。通过输入Fasta格式的氨基酸序列,使用AutoTokenizer和AutoModel加载模型,并通过调用model_函数获取蛋白质序列的整体代表向量。引用\[2\]中的代码展示了另一种预训练蛋白质语言模型的使用示例,使用AutoTokenizer和OPTForCausalLM加载模型,并通过调用generate函数生成与给定前缀相关的蛋白质百科解释。 #### 引用[.reference_title] - *1* [ESM2蛋白预训练模型 蛋白质、氨基酸向量表示](https://blog.csdn.net/weixin_42357472/article/details/128036976)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [全都会!预测蛋白质标注!创建讲义!解释数学公式!最懂科学的智能NLP模型Galactica尝鲜 ⛵](https://blog.csdn.net/ShowMeAI/article/details/128125557)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 98
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值