基于动力学约束的模型强化学习(Model-Based Reinforcement Learning with Dynamics Constraints)
是一种在构建环境模型时考虑物理动力学约束的方法。这种方法在处理复杂的物理系统(如人形机器人行走)时尤其有效,因为它能确保模型预测的状态转移是物理上合理的。
原理介绍
动力学约束强化学习方法通过显式地将物理动力学模型引入学习过程,结合模型学习和优化来提高学习效率和模型的准确性。该方法可以概括为以下几个步骤:
是一种在构建环境模型时考虑物理动力学约束的方法。这种方法在处理复杂的物理系统(如人形机器人行走)时尤其有效,因为它能确保模型预测的状态转移是物理上合理的。
动力学约束强化学习方法通过显式地将物理动力学模型引入学习过程,结合模型学习和优化来提高学习效率和模型的准确性。该方法可以概括为以下几个步骤: