前序遍历和中序遍历重建二叉树

原理

在二叉树中,前序遍历的第一个结点是根节点,但在中序遍历序列中,根结点在序列中间,跟结点的左边是左子树,根结点的右边是右子树。因此,保存前序遍历的序列中的第一个结点为新建二叉树的根结点,遍历中序遍历序列,寻找该根结点。就可以重建二叉树了!

实现代码

//由前序遍历和中序遍历重建二叉树(前序序列:1 2 3 4 5 6 - 中序序列:3 2 4 1 6 5)
BinaryNode* ConstructTreeCode(int* startPreorder, int* endProrder, int* startInorder, int* endInorder)
{
	BinaryNode *pRoot = new BinaryNode(startPreorder[0]);//前序遍历的第一个节点就是根节点
	pRoot->_left = pRoot->_right = NULL;
	//只有一个节点或只剩下一个节点
	if (startPreorder == endProrder)
	{
		if (startInorder == endInorder && *startPreorder == *startInorder)
			return pRoot;
		else
			return NULL;
	}
	//在中序遍历中找根节点
	int* InorderRoot = startInorder;
	while (InorderRoot <= endInorder && *InorderRoot != pRoot->_value)
		InorderRoot++;
	if (InorderRoot == endInorder && *InorderRoot != pRoot->_value)//没找到
		return NULL;
	//找到了
	int leftlength = InorderRoot - startInorder;
	int* leftPreorderend = startPreorder + leftlength;
	if (leftlength > 0)
		pRoot->_left = ConstructTreeCode(startPreorder + 1, leftPreorderend, startInorder, InorderRoot - 1);
	if (leftlength < endProrder-startPreorder)
		pRoot->_right = ConstructTreeCode(leftPreorderend + 1, endProrder, InorderRoot + 1, endInorder);
	return pRoot;
}
BinaryNode* ConstructTree(int* Preorder, int* Inorder, int length)
{
	if (Preorder == NULL && Inorder == NULL && length <= 0)
		return NULL;
	return ConstructTreeCode(Preorder, Preorder + length - 1, Inorder, Inorder + length - 1);
}
void  Preorder(BinaryNode* root)
{
	if (root == NULL)
		return;
	cout << root->_value << " ";
	Preorder(root->_left);
	Preorder(root->_right);
}
void FunTest4()
{
	int array1[6] = { 1, 2, 3, 4, 5, 6 };
	int array2[6] = { 3, 2, 4, 1, 6, 5 };
	BinaryNode* pRoot = ConstructTree(array1, array2, 6);
	Preorder(pRoot);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值