pycharm训练cifar-10

原创 2018年04月15日 15:18:01

在官网下载了cifar-10数据集    在pycharm中训练时   一直提示有错  第一个错误是numpy   原因是:我的python版本是3.6  按理来说应该用pip3安装  但是我使用了pip安装   后来先下载在进行正确的安装   这个问题解决了

第二个错误是   导入时有错   原因是:下载别人的代码  他们导入的是自己创建的文件   我自己并没有创建相应的文件  所以将文件路径改为自己数据集所在的路径


# -*- coding: utf-8 -*-

import numpy as np
from julyedu import load_CIFAR10
import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (10.0, 8.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# 载入CIFAR-10数据集
cifar10_dir = 'F:\研发\cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# 看看数据集中的一些样本:每个类别展示一些
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
# -*- coding: utf-8 -*-
import pickle as p
import numpy as np
import os


def load_CIFAR_batch(filename):
    """ 载入cifar数据集的一个batch """
    with open(filename, 'rb') as f:
        datadict = p.load(f, encoding='latin1')
        X = datadict['data']
        Y = datadict['labels']
        X = X.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float")
        Y = np.array(Y)
        return X, Y


def load_CIFAR10(ROOT):
    """ 载入cifar全部数据 """
    xs = []
    ys = []
    for b in range(1, 2):
        f = os.path.join(ROOT, 'data_batch_%d' % (b,))
        X, Y = load_CIFAR_batch(f)
        xs.append(X)         #将所有batch整合起来
        ys.append(Y)
    Xtr = np.concatenate(xs) #使变成行向量,最终Xtr的尺寸为(50000,32,32,3)
    Ytr = np.concatenate(ys)
    del X, Y
    Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch'))
    return Xtr, Ytr, Xte, Yte

用Perl语言进行Socket编程

用Perl语言进行Socket编程 发布时间:2001年3月28日 00:00    网络编程是一门神秘且复杂的艺术,当然也十分有趣。Perl语言提供了丰富的TCP/IP网络函数,所有这些函数都直接来...
  • ghj1976
  • ghj1976
  • 2001-08-19 15:06:00
  • 1241

使用Pycharm遇到的一些问题及解决办法

1. 在终端可以import caffe但是在pycharm中No module named caffe 解决: 方法一 在要运行的文件最上面加上 import sys sys.pat...
  • jiangyanting2011
  • jiangyanting2011
  • 2018-01-15 16:16:22
  • 1658

pycharm快捷键、常用设置、配置管理

本博客一直在同步更新中! 内容包含:pycharm学习技巧 Learning tips、PyCharm3.0默认快捷键(翻译的)、pycharm常用设置、pycharm环境和路径配置、Pycha...
  • c2a2o2
  • c2a2o2
  • 2017-09-27 10:17:20
  • 125

windows + CUDA + Anaconda + tensorflow + PyCharm

【深度学习-tensorflow】win7 + Anaconda + PyCharm 本文主要介绍如何在windows系统下基于Anaconda3安装深度学习框架 - Tensorflow。 ...
  • Houchaoqun_XMU
  • Houchaoqun_XMU
  • 2017-03-24 11:36:10
  • 4675

【学习笔记】机器学习之用TensorFlow cnn 测试CIFAR-10数据集

1.TensorFlow  如果想对这个框架有深刻的认识,可以去看相关的一些课程。只是初步了解的话,就看看网上的相关的入门基础和代码案例,了解他每一步做啥就行了。 可以先学学训练MNIST这个入门级的...
  • ludiao1428
  • ludiao1428
  • 2017-11-05 15:06:22
  • 306

caffe学习(二) CIFAR-10数据集上训练

原文:http://blog.csdn.net/liumaolincycle/article/details/47258937 caffe示例实现之1在CIFAR-10数据集上训练与测试Caffe ...
  • young951023
  • young951023
  • 2017-10-08 12:49:28
  • 202

计算机视觉caffe之路第三篇:CIFAR-10数据集训练及预测实例

1.简介Cifar-10是由Hinton的两个大弟子Alex Krizhevsky、Ilya Sutskever收集的一个用于普适物体识别的数据集。Cifar是加拿大政府牵头投资的一个先进科学项目研究...
  • asukasmallriver
  • asukasmallriver
  • 2017-06-12 11:40:03
  • 676

cifar-10图像插值方法对训练模型结果的影响

有的时候我们为了使用比较深的神经网络训练cifar-10数据集。 这时,就不得不对resolution=32*32 的图像进行放大。来适应更深的 neutral network。 图像放大...
  • dongfang1984
  • dongfang1984
  • 2017-04-20 15:59:03
  • 906

tensirflow实战6:进阶的卷积神经网络训练CIFAR-10数据集

1.CIFAR-10数据集介绍 本节使用的是比较经典的数据集叫CIFAR-10,包含60000张32*32的彩色图像(总算不像MNIST,是灰度图了,灰度图是单通道),因为是彩色图像,所以这个数据集...
  • Felaim
  • Felaim
  • 2017-03-30 19:31:36
  • 4540

TensorFlow学习--卷积神经网络训练CIFAR-10数据集

CIFAR-10数据集 CIFAR-10数据集包含10个类的60000张32x32的彩色图像,每个类有6000张图像。 有50000张训练图像和10000张测试图像。 10个分类明细及对应的部分图...
  • akadiao
  • akadiao
  • 2017-11-12 16:27:27
  • 260
收藏助手
不良信息举报
您举报文章:pycharm训练cifar-10
举报原因:
原因补充:

(最多只允许输入30个字)