x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False)
求两个坐标之间的距离→
distmat = np.linalg.norm(coordinates1 - coordinates2)
①x: 表示矩阵(也可以是一维)
②ord:范数类型
向量的范数:
矩阵的范数:
ord=1:列和的最大值
ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根(matlab在线版,计算ans=ATA,[x,y]=eig(ans),sqrt(y),x是特征向量,y是特征值)
ord=∞:行和的最大值
ord=None:默认情况下,是求整体的矩阵元素平方和,再开根号。(没仔细看,以为默认情况下就是矩阵的二范数,修正一下,默认情况下是求整个矩阵元素平方和再开根号)
③axis:处理类型
axis=1表示按行向量处理,求多个行向量的范数
axis=0表示按列向量处理,求多个列向量的范数
axis=None表示矩阵范数。
④keepding:是否保持矩阵的二维特性
True表示保持矩阵的二维特性,False相反
建立numpy空数值
np.empty_like(a) #依据给定数组(a)的形状和类型返回一个新的空数组。