关于最优控制的一些总结1

控制理论发展到现在,可以说成果丰硕,特别是在理论方面每年都有大量的论文发表,相应的控制方法分支也很多(这里主要是指现代控制理论,以频域分析为代表的经典控制理论在控制工程中用得比较多,而且通常在本科阶段的自动控制原理课程上讲得比较多了,同时以MATLAB为代表的软件也将频域分析工具做得比较完善了,所以主要是实际应用,但不太好写论文发表),一般在控制理论专业的研究生课程里面多少会接触一些控制分支的入门知识,为后面写论文打下基础,包括鲁棒控制、自适应控制、最优控制等。和其他控制分支相比,最优控制比较特别,一个显著的特点是最优控制的理论支撑并不是其他控制分支所强调的稳定性,其出发点是设计控制输入使得事先定义的性能指标取极值。最优控制在英文文献中通常称为optimal control, 单从英文翻译的角度,optimal不是最高级形式,因此将其翻译成最优可以认为是一种意译,而且最优控制这个名称很大程度上占了名称的便宜,从而博得关注,毕竟最优这个词容易给人一种印象,似乎最优控制是控制里面最好的方法,从而吸引人们的注意力(可见在科研过程中取一个好名字是多么重要,就像现在的深度学习一样,听起来就很高大上,写论文也是如此,有个好的题目容易获得审稿人的印象分,当然里面的内容也要能在一定程度上支撑起这个题目),但在深入了解之后便会发现,最优控制的控制效果能够好到什么程度和具体的工程应用背景有关,绝不像其名字听起来那么完美。

我们还是先用控制常用的叙述方式阐述最优控制的思想,最优控制研究的是模型精确已知的系统:
x ˙ ( t ) = f ( x ( t ) , u ( t ) , t ) (1) \dot{x}(t)=f(x(t),u(t),t)\tag{1} x˙(t)=f(x(t),u(t),t)(1)

其中, x ( t ) ∈ R n x(t)\in\mathbb{R}^{n} x(t)Rn为系统状态, u ( t ) u(t) u(t)为控制输入, f f f为已知的线性或者非线性函数。针对系统(1),在给定的容许控制集 U \mathbf{U} U中求控制律 u ( t ) ∈ U u(t)\in\mathbf{U} u(t)U, t ∈ [ t 0 , t f ] t\in[t_0,t_\mathrm{f}] t[t0,tf],使得性能指标

J = Φ [ x ( t f ) , t f ] + ∫ t 0 t f L [ x ( t ) , u ( t ) , t ] d t J=\varPhi[x(t_\mathrm{f}),t_\mathrm{f}]+\int_{t_0}^{t_\mathrm{f}}L[x(t),u(t),t]\mathrm{d}t J=Φ[x(tf),tf]+t0tfL[x(t),u(t),t]dt

最小(注意到 J J J为标量,如果需要性能指标最优,只需要将 J J J取负号即可)。同时,控制律还应满足对系统相应的约束条件。最优控制有三大理论支撑:变分法、极小值原理和动态规划。一般的最优控制教材会从变分法出发处理不同情形的约束条件,得到相应的最优性条件,然后用极小值原理对最优性条件进行推广,表明极小值原理比变分法更为适用(不过极小值原理的证明比较复杂),最后分析动态规划与变分法和极小值原理的等价性。这里梳理一下利用变分法得到的几种典型约束情形下的最优性条件,主要分为终端时刻固定和终端时刻自由两类,具体推导可参见文献[1]和[2],特别是文献[2]是最优控制领域的经典著作,值得看一看。

1.终端时刻固定

1.1 终端时刻固定,终端状态自由

此时系统初始状态 x ( t 0 ) x(t_0) x(t0)、起始时刻 t 0 t_0 t0和终端时刻 t f t_\mathrm{f} tf给定,定义Hamiltion函数
H [ x ( t ) , u ( t ) , λ ( t ) , t ] = L [ x ( t ) , u ( t ) , t ] + λ T ( t ) f [ x ( t ) , u ( t ) , t ] H[x(t),u(t),\lambda(t),t]=L[x(t),u(t),t]+\lambda^\mathrm{T}(t)f[x(t),u(t),t] H[x(t),u(t),λ(t),t]=L[x(t),u(t),t]+λT(t)f[x(t),u(t),t]

其中, λ ( t ) \lambda(t) λ(t)为Lagrange乘子,也称为协态变量。若 u ∗ ( t ) u^*(t) u(t) x ∗ ( t ) x^*(t) x(t)分别为最优控制和最优轨线,则有

(1)规范方程
x ˙ ∗ ( t ) = ∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ λ ( t ) = f [ x ∗ ( t ) , u ∗ ( t ) , t ] \dot{x}^*(t)=\frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial\lambda(t)}=f[x^*(t),u^*(t),t] x˙(t)=λ(t)H[x(t),u(t),λ(t),t]=f[x(t),u(t),t]

λ ˙ ( t ) = − ∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ x ∗ ( t ) \dot\lambda(t)=-\frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial x^*(t)} λ˙(t)=x(t)H[x(t),u(t),λ(t),t]

(2)边值条件
x ( t 0 ) = x 0 x(t_0)=x_0 x(t0)=x0

λ ( t f ) = ∂ Φ [ x ∗ ( t f ) , t f ] ∂ x ∗ ( t f ) \lambda(t_\mathrm{f})=\frac{\partial \varPhi[x^*(t_\mathrm{f}),t_\mathrm{f}]}{\partial x^*(t_\mathrm{f})} λ(tf)=x(tf)Φ[x(tf),tf]

(3)极值条件
∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ u ∗ ( t ) = 0 \frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial u^*(t)}=0 u(t)H[x(t),u(t),λ(t),t]=0

1.2 终端时刻固定,终端状态固定

此时系统初始状态 x ( t 0 ) x(t_0) x(t0)、初始时刻 t 0 t_0 t0、终端状态 x ( t f ) x(t_\mathrm{f}) x(tf)和终端时刻 t f t_\mathrm{f} tf均给定,定义Hamiltion函数
H [ x ( t ) , u ( t ) , λ ( t ) , t ] = L [ x ( t ) , u ( t ) , t ] + λ T ( t ) f [ x ( t ) , u ( t ) , t ] H[x(t),u(t),\lambda(t),t]=L[x(t),u(t),t]+\lambda^\mathrm{T}(t)f[x(t),u(t),t] H[x(t),u(t),λ(t),t]=L[x(t),u(t),t]+λT(t)f[x(t),u(t),t]

则有

(1)规范方程
x ˙ ∗ ( t ) = ∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ λ ( t ) = f [ x ∗ ( t ) , u ∗ ( t ) , t ] \dot{x}^*(t)=\frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial\lambda(t)}=f[x^*(t),u^*(t),t] x˙(t)=λ(t)H[x(t),u(t),λ(t),t]=f[x(t),u(t),t]

λ ˙ ( t ) = − ∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ x ∗ ( t ) \dot\lambda(t)=-\frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial x^*(t)} λ˙(t)=x(t)H[x(t),u(t),λ(t),t]

(2)边值条件
x ( t 0 ) = x 0 x(t_0)=x_0 x(t0)=x0

x ( t f ) = x f x(t_\mathrm{f})=x_\mathrm{f} x(tf)=xf

(3)极值条件
∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ u ∗ ( t ) = 0 \frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial u^*(t)}=0 u(t)H[x(t),u(t),λ(t),t]=0

1.3 终端时刻固定,终端状态等式约束

与第2种情形相比,这一情形更为一般,要求终端状态 x ( t f ) x(t_\mathrm{f}) x(tf)满足一组代数方程。此时系统初始状态 x ( t 0 ) x(t_0) x(t0)、初始时刻 t 0 t_0 t0和终端时刻 t f t_\mathrm{f} tf均给定,终端状态等式约束描述如下:

g [ x ( t f ) , t f ] = 0 , g ∈ R l g[x(t_\mathrm{f}),t_\mathrm{f}]=0,\quad g\in\mathbb{R}^l g[x(tf),tf]=0,gRl

其中函数向量 g g g对于 x ( t f ) x(t_\mathrm{f}) x(tf)存在一阶偏导数, l ≤ n l\leq n ln。Hamiltion函数定义为
H [ x ( t ) , u ( t ) , λ ( t ) , t ] = L [ x ( t ) , u ( t ) , t ] + λ T ( t ) f [ x ( t ) , u ( t ) , t ] H[x(t),u(t),\lambda(t),t]=L[x(t),u(t),t]+\lambda^\mathrm{T}(t)f[x(t),u(t),t] H[x(t),u(t),λ(t),t]=L[x(t),u(t),t]+λT(t)f[x(t),u(t),t]

则存在适当选取的Lagrange乘子 μ \mu μ使得如下方程和等式成立:

(1)规范方程
x ˙ ∗ ( t ) = ∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ λ ( t ) = f [ x ∗ ( t ) , u ∗ ( t ) , t ] \dot{x}^*(t)=\frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial\lambda(t)}=f[x^*(t),u^*(t),t] x˙(t)=λ(t)H[x(t),u(t),λ(t),t]=f[x(t),u(t),t]

λ ˙ ( t ) = − ∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ x ∗ ( t ) \dot\lambda(t)=-\frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial x^*(t)} λ˙(t)=x(t)H[x(t),u(t),λ(t),t]

(2)边值条件
x ( t 0 ) = x 0 x(t_0)=x_0 x(t0)=x0

λ ( t f ) = ∂ Φ [ x ∗ ( t f ) , t f ] ∂ x ∗ ( t f ) + ∂ g T [ x ∗ ( t f ) , t f ] ∂ x ∗ ( t f ) μ \lambda(t_\mathrm{f})=\frac{\partial \varPhi[x^*(t_\mathrm{f}),t_\mathrm{f}]}{\partial x^*(t_\mathrm{f})}+\frac{\partial g^\mathrm{T}[x^*(t_\mathrm{f}),t_\mathrm{f}]}{\partial x^*(t_\mathrm{f})}\mu λ(tf)=x(tf)Φ[x(tf),tf]+x(tf)gT[x(tf),tf]μ

g [ x ∗ ( t f ) , t f ] = 0 g[x^*(t_\mathrm{f}),t_\mathrm{f}]=0 g[x(tf),tf]=0

(3)极值条件
∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ u ∗ ( t ) = 0 \frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial u^*(t)}=0 u(t)H[x(t),u(t),λ(t),t]=0

前面3种情形都是终端时刻固定,且情形1.3在工程应用中比较常见,下面进一步看终端时刻自由的情形。

2.终端时刻自由

此时一般考虑终端状态具有等式约束,设 t f ∗ t_\mathrm{f}^* tf为最优终端时刻,终端状态等式约束如式(15)所示,则存在适当选取的Lagrange乘子 μ \mu μ使得如下方程和等式成立:

(1)规范方程
x ˙ ∗ ( t ) = ∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ λ ( t ) = f [ x ∗ ( t ) , u ∗ ( t ) , t ] \dot{x}^*(t)=\frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial\lambda(t)}=f[x^*(t),u^*(t),t] x˙(t)=λ(t)H[x(t),u(t),λ(t),t]=f[x(t),u(t),t]

λ ˙ ( t ) = − ∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ x ∗ ( t ) \dot\lambda(t)=-\frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial x^*(t)} λ˙(t)=x(t)H[x(t),u(t),λ(t),t]

(2)边值条件
x ( t 0 ) = x 0 x(t_0)=x_0 x(t0)=x0

λ ( t f ∗ ) = ∂ Φ [ x ∗ ( t f ∗ ) , t f ∗ ] ∂ x ∗ ( t f ∗ ) + ∂ g T [ x ∗ ( t f ∗ ) , t f ∗ ] ∂ x ∗ ( t f ∗ ) μ \lambda(t_\mathrm{f}^*)=\frac{\partial \varPhi[x^*(t_\mathrm{f}^*),t_\mathrm{f}^*]}{\partial x^*(t_\mathrm{f}^*)}+\frac{\partial g^\mathrm{T}[x^*(t_\mathrm{f}^*),t_\mathrm{f}^*]}{\partial x^*(t_\mathrm{f}^*)}\mu λ(tf)=x(tf)Φ[x(tf),tf]+x(tf)gT[x(tf),tf]μ

(3)极值条件
∂ H [ x ∗ ( t ) , u ∗ ( t ) , λ ( t ) , t ] ∂ u ∗ ( t ) = 0 \frac{\partial H[x^*(t),u^*(t),\lambda(t),t]}{\partial u^*(t)}=0 u(t)H[x(t),u(t),λ(t),t]=0

(4)终端条件
H [ x ∗ ( t f ∗ ) , u ∗ ( t f ∗ ) , λ ( t f ∗ ) , t f ∗ ] = − ∂ Φ [ x ∗ ( t f ∗ ) , t f ∗ ] ∂ t f ∗ − ∂ g T [ x ∗ ( t f ∗ ) , t f ∗ ] ∂ t f ∗ μ H[x^*(t_\mathrm{f}^*),u^*(t_\mathrm{f}^*),\lambda({t_\mathrm{f}^*}),t_\mathrm{f}^*]=-\frac{\partial \varPhi[x^*(t_\mathrm{f}^*),t_\mathrm{f}^*]}{\partial t_\mathrm{f}^*}-\frac{\partial g^\mathrm{T}[x^*(t_\mathrm{f}^*),t_\mathrm{f}^*]}{\partial t_\mathrm{f}^*}\mu H[x(tf),u(tf),λ(tf),tf]=tfΦ[x(tf),tf]tfgT[x(tf),tf]μ

直观上看,终端时刻自由的适用范围比终端时刻固定更广,相应的方程也会复杂一点,毕竟求解的变量多了一个最优终端时刻,实际中则需要结合具体的应用背景选择情形。一般在航天器轨迹优化应用中,指标为节省燃料等形式,如果终端时刻自由,由于轨道的周期性,不限制飞行时间可能得不到想要的燃料最优轨迹,或者说飞行时间可能无限长,不具备实际意义,通常的做法是事先设定一个较大的飞行时间,作为实际最优飞行时间的上界,将问题作为终端时刻固定情形进行求解,如果得到的最优解中到达目标轨道所用的时间小于设定飞行时间,那么相当于此后的控制一直为0。

此外,无论哪种情形都需要面对两点边值问题,即所得到的方程中,只知道系统状态的初值和协态变量的终值,求解上需要费些功夫,关于最优控制的数值求解属于专门的研究领域了,留待后续介绍。

参考文献

[1]钟宜生. 最优控制[M]. 清华大学出版社, 2015.

[2]Bryson A E, Ho Yu-Chi. Applied optimal control: optimization, estimation and control[M]. Taylor & Francis, 1975.

  • 9
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 《最优控制系统》是D.Subbaram Naidu教授撰写的一本关于最优控制系统的重要参考书籍。本书的中文版是为了方便中文读者的理解而进行翻译的。 这本书通过简洁明晰的方式介绍了最优控制系统的基本概念、方法和应用。它首先介绍了最优控制的基本原理,包括最优控制问题的数学表述和最优化理论的基础知识。 在随后的章节中,书籍详细讨论了最优控制系统的各个方面,包括最优性条件、变分法、最优控制的数值方法、动态规划等。此外,书中还介绍了最优控制系统的应用领域,如机械工程、电力系统、航天航空等,并提供了相关的例子和案例分析。 本书的特点之一是对最优控制理论的深入剖析和实际应用的结合。它不仅提供了最优控制系统的数学模型和推导过程,还重点关注了实际问题解决中的工程实践。 值得一提的是,这本书的中文版对中文读者来说是一本宝贵的资料,因为它突破了语言障碍,使得更多的人能够深入学习和研究最优控制系统。 总而言之,《最优控制系统》是一本权威、系统性很强的最优控制理论著作的中文版。它在理论和应用方面都提供了丰富的内容,为对最优控制系统感兴趣的读者提供了重要的参考和指导。 ### 回答2: 《最优控制系统》是D. Subbaram Naidu所著的一本经典著作。这本书详细介绍了最优控制系统的理论、方法和应用。最优控制系统是一种通过优化目标函数来最大化系统性能的控制系统。它通过对系统的数学建模,利用最优化方法来求解最优控制律,以实现系统的最佳性能。 这本书的内容非常丰富,涵盖了最优控制系统的各个方面。首先,它介绍了最优控制的基本概念和原理,包括最优控制的目标和约束条件,以及最优控制问题的分类和形式化表示。然后,它介绍了最优控制的基本方法,包括经典控制和现代控制的最优化方法,如最优控制理论、动态规划、极大极小原理等。此外,它还介绍了最优控制系统的设计和实现,包括系统动态建模、控制器设计和系统性能评估等。 这本书不仅仅是理论性的介绍,它还包含了大量的实际应用案例和示例。这些案例涉及到不同领域的最优控制系统,如航空航天、机器人、制造业等。通过这些实例,读者可以更好地理解和应用最优控制系统的理论和方法。 总的来说,《最优控制系统》是一本权威的参考书籍,适用于控制工程师、研究人员和学生。它提供了深入的理论知识和实际应用案例,可以帮助读者全面了解和掌握最优控制系统的原理和方法,从而提高系统的性能和效率。无论是在学术研究还是实际应用中,这本书都是一本不可或缺的参考书。 ### 回答3: 《最优控制系统》是由D.Subbaram Naidu编写的一本关于最优控制理论的中文版教材。该教材介绍了最优控制领域的基本原理和方法,旨在帮助读者理解和应用最优控制理论。 教材首先介绍了系统的最优控制概念和基本数学工具,如微分方程、变分法和拉格朗日函数等。随后,它详细讲解了最优控制问题的数学表述和求解方法,包括动态规划、极值原理和最优化算法等。教材还涵盖了最优控制系统的不同类型,如线性和非线性系统、离散和连续系统以及时变系统等。 此外,《最优控制系统》还包括了实际应用方面的内容,例如最优飞行控制、自适应控制和鲁棒控制等。对于读者来说,这本教材不仅提供了理论知识,还提供了实践中的案例和应用。 通过学习《最优控制系统》,读者可以深入了解最优控制理论的基本原理和应用方法。该教材以中文写作,使得中文读者更容易理解和应用其中的知识。无论是对于学生来说作为教材,还是对于工程师来说作为参考书,都是一本很有价值的资源。 总结而言,《最优控制系统》是一本全面介绍最优控制理论的中文版教材,适用于对最优控制理论感兴趣的读者。无论是学术研究还是工程实践,都能从中获得所需的知识和方法。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值