关于姿态运动的一些总结1_姿态旋转矩阵性质

控制的一大类对象为以机器人为代表的运动体控制,相应地,我们会比较关心三维空间中被控对象的运动状态,即位置、速度和姿态,对位置和速度的描述需要首先确定坐标系,即是在什么坐标系下的位置和速度,而姿态则描述坐标系与坐标系之间的关系。本部分的主要参考文献为[1]和[2]。

我们通常采用右手坐标系描述运动量,设三维空间中有两个原点重合的坐标系: s \mathrm{s} s { x ^ s , y ^ s , z ^ s } \{\hat{\mathbf{x}}_\mathrm{s},\hat{\mathbf{y}}_\mathrm{s},\hat{\mathbf{z}}_\mathrm{s}\} {x^s,y^s,z^s} b \mathrm{b} b { x ^ b , y ^ b , z ^ b } \{\hat{\mathbf{x}}_\mathrm{b},\hat{\mathbf{y}}_\mathrm{b},\hat{\mathbf{z}}_\mathrm{b}\} {x^b,y^b,z^b} x ^ s , y ^ s , z ^ s \hat{\mathbf{x}}_\mathrm{s},\hat{\mathbf{y}}_\mathrm{s},\hat{\mathbf{z}}_\mathrm{s} x^s,y^s,z^s x ^ b , y ^ b , z ^ b \hat{\mathbf{x}}_\mathrm{b},\hat{\mathbf{y}}_\mathrm{b},\hat{\mathbf{z}}_\mathrm{b} x^b,y^b,z^b分别为 s \mathrm{s} s系和 b \mathrm{b} b系下相互正交的三个单位矢量(默认情形下这里的矢量取列矢量形式),且分别与 s \mathrm{s} s系和 b \mathrm{b} b系下的三个坐标轴正方向平行,对于空间中的任意一个矢量 r \boldsymbol{r} r,可以投影到任意坐标系下进行表示,设其在 s \mathrm{s} s系下的三个分量为 r 1 s , r 2 s , r 3 s r_{1\mathrm{s}},r_{2\mathrm{s}},r_{3\mathrm{s}} r1s,r2s,r3s,在 b \mathrm{b} b系下的三个分量为 r 1 b , r 2 b , r 3 b r_{1\mathrm{b}},r_{2\mathrm{b}},r_{3\mathrm{b}} r1b,r2b,r3b,则有
r = r 1 s x ^ s + r 2 s y ^ s + r 3 s z ^ s = r 1 b x ^ b + r 2 b y ^ b + r 3 b z ^ b (1) \boldsymbol{r}=r_{1\mathrm{s}}\hat{\mathbf{x}}_\mathrm{s}+r_{2\mathrm{s}}\hat{\mathbf{y}}_\mathrm{s}+r_{3\mathrm{s}}\hat{\mathbf{z}}_\mathrm{s}=r_{1\mathrm{b}}\hat{\mathbf{x}}_\mathrm{b}+r_{2\mathrm{b}}\hat{\mathbf{y}}_\mathrm{b}+r_{3\mathrm{b}}\hat{\mathbf{z}}_\mathrm{b}\tag{1} r=r1sx^s+r2sy^s+r3sz^s=r1bx^b+r2by^b+r3bz^b(1)

首先以 s \mathrm{s} s系为基准坐标系,对式(1)后半部分的左右两端依次和 x ^ s , y ^ s , z ^ s \hat{\mathbf{x}}_\mathrm{s},\hat{\mathbf{y}}_\mathrm{s},\hat{\mathbf{z}}_\mathrm{s} x^s,y^s,z^s点积,可得
{ r 1 s = r 1 b x ^ b ⋅ x ^ s + r 2 b y ^ b ⋅ x ^ s + r 3 b z ^ b ⋅ x ^ s r 2 s = r 1 b x ^ b ⋅ y ^ s + r 2 b y ^ b ⋅ y ^ s + r 3 b z ^ b ⋅ y ^ s r 3 s = r 1 b x ^ b ⋅ z ^ s + r 2 b y ^ b ⋅ z ^ s + r 3 b z ^ b ⋅ z ^ s (2) \left\{ \begin{array}{ll} r_{1\mathrm{s}}=r_{1\mathrm{b}}\hat{\mathbf{x}}_\mathrm{b}\cdot\hat{\mathbf{x}}_\mathrm{s}+r_{2\mathrm{b}}\hat{\mathbf{y}}_\mathrm{b}\cdot\hat{\mathbf{x}}_\mathrm{s}+r_{3\mathrm{b}}\hat{\mathbf{z}}_\mathrm{b}\cdot\hat{\mathbf{x}}_\mathrm{s}\\ r_{2\mathrm{s}}=r_{1\mathrm{b}}\hat{\mathbf{x}}_\mathrm{b}\cdot\hat{\mathbf{y}}_\mathrm{s}+r_{2\mathrm{b}}\hat{\mathbf{y}}_\mathrm{b}\cdot\hat{\mathbf{y}}_\mathrm{s}+r_{3\mathrm{b}}\hat{\mathbf{z}}_\mathrm{b}\cdot\hat{\mathbf{y}}_\mathrm{s}\\ r_{3\mathrm{s}}=r_{1\mathrm{b}}\hat{\mathbf{x}}_\mathrm{b}\cdot\hat{\mathbf{z}}_\mathrm{s}+r_{2\mathrm{b}}\hat{\mathbf{y}}_\mathrm{b}\cdot\hat{\mathbf{z}}_\mathrm{s}+r_{3\mathrm{b}}\hat{\mathbf{z}}_\mathrm{b}\cdot\hat{\mathbf{z}}_\mathrm{s} \end{array} \right.\tag{2} r1s=r1bx^bx^s+r2by^bx^s+r3bz^bx^sr2s=r1bx^by^s+r2by^by^s+r3bz^by^sr3s=r1bx^bz^s+r2by^bz^s+r3bz^bz^s(2)

r s = [ r 1 s , r 2 s , r 3 s ] T \boldsymbol{r}^\mathrm{s}=[r_{1\mathrm{s}},r_{2\mathrm{s}},r_{3\mathrm{s}}]^\mathrm{T} rs=[r1s,r2s,r3s]T r b = [ r 1 b , r 2 b , r 3 b ] T \boldsymbol{r}^\mathrm{b}=[r_{1\mathrm{b}},r_{2\mathrm{b}},r_{3\mathrm{b}}]^\mathrm{T} rb=[r1b,r2b,r3b]T分别表示矢量 r \boldsymbol{r} r在与 s \mathrm{s} s系和 b \mathrm{b} b系下的投影,式(2)可进一步表示为
r s = [ r 1 s r 2 s r 3 s ] = [ x ^ b ⋅ x ^ s y ^ b ⋅ x ^ s z ^ b ⋅ x ^ s x ^ b ⋅ y ^ s y ^ b ⋅ y ^ s z ^ b ⋅ y ^ s x ^ b ⋅ z ^ s y ^ b ⋅ z ^ s z ^ b ⋅ z ^ s ] [ r 1 b r 2 b r 3 b ] = C b s r b (3) \begin{aligned} \boldsymbol{r}^\mathrm{s}&=\begin{bmatrix} r_{1\mathrm{s}}\\ r_{2\mathrm{s}}\\ r_{3\mathrm{s}} \end{bmatrix} =\begin{bmatrix} \hat{\mathbf{x}}_\mathrm{b}\cdot\hat{\mathbf{x}}_\mathrm{s} & \hat{\mathbf{y}}_\mathrm{b}\cdot\hat{\mathbf{x}}_\mathrm{s} & \hat{\mathbf{z}}_\mathrm{b}\cdot\hat{\mathbf{x}}_\mathrm{s}\\ \hat{\mathbf{x}}_\mathrm{b}\cdot\hat{\mathbf{y}}_\mathrm{s} & \hat{\mathbf{y}}_\mathrm{b}\cdot\hat{\mathbf{y}}_\mathrm{s} & \hat{\mathbf{z}}_\mathrm{b}\cdot\hat{\mathbf{y}}_\mathrm{s} \\ \hat{\mathbf{x}}_\mathrm{b}\cdot\hat{\mathbf{z}}_\mathrm{s} & \hat{\mathbf{y}}_\mathrm{b}\cdot\hat{\mathbf{z}}_\mathrm{s} & \hat{\mathbf{z}}_\mathrm{b}\cdot\hat{\mathbf{z}}_\mathrm{s} \end{bmatrix}\begin{bmatrix} r_{1\mathrm{b}}\\ r_{2\mathrm{b}}\\ r_{3\mathrm{b}} \end{bmatrix}\\ &=\boldsymbol{C}_\mathrm{b}^\mathrm{s}\boldsymbol{r}^\mathrm{b} \end{aligned} \tag{3} rs=r1sr2sr3s=x^bx^sx^by^sx^bz^sy^bx^sy^by^sy^bz^sz^bx^sz^by^sz^bz^sr1br2br3b=Cbsrb(3)

式中, C b n \boldsymbol{C}_\mathrm{b}^\mathrm{n} Cbn为从 b \mathrm{b} b系到 s \mathrm{s} s系的旋转矩阵。

然后以 b \mathrm{b} b系为基准坐标系,对式(1)后半部分的左右两端依次和 x ^ b , y ^ b , z ^ b \hat{\mathbf{x}}_\mathrm{b},\hat{\mathbf{y}}_\mathrm{b},\hat{\mathbf{z}}_\mathrm{b} x^b,y^b,z^b点积,可得
{ r 1 b = r 1 s x ^ s ⋅ x ^ b + r 2 s y ^ s ⋅ x ^ b + r 3 s z ^ s ⋅ x ^ b r 2 b = r 1 s x ^ s ⋅ y ^ b + r 2 s y ^ s ⋅ y ^ b + r 3 s z ^ s ⋅ y ^ b r 3 b = r 1 s x ^ s ⋅ z ^ b + r 2 s y ^ s ⋅ z ^ b + r 3 s z ^ s ⋅ z ^ b (4) \left\{ \begin{array}{ll} r_{1\mathrm{b}}=r_{1\mathrm{s}}\hat{\mathbf{x}}_\mathrm{s}\cdot\hat{\mathbf{x}}_\mathrm{b}+r_{2\mathrm{s}}\hat{\mathbf{y}}_\mathrm{s}\cdot\hat{\mathbf{x}}_\mathrm{b}+r_{3\mathrm{s}}\hat{\mathbf{z}}_\mathrm{s}\cdot\hat{\mathbf{x}}_\mathrm{b}\\ r_{2\mathrm{b}}=r_{1\mathrm{s}}\hat{\mathbf{x}}_\mathrm{s}\cdot\hat{\mathbf{y}}_\mathrm{b}+r_{2\mathrm{s}}\hat{\mathbf{y}}_\mathrm{s}\cdot\hat{\mathbf{y}}_\mathrm{b}+r_{3\mathrm{s}}\hat{\mathbf{z}}_\mathrm{s}\cdot\hat{\mathbf{y}}_\mathrm{b}\\ r_{3\mathrm{b}}=r_{1\mathrm{s}}\hat{\mathbf{x}}_\mathrm{s}\cdot\hat{\mathbf{z}}_\mathrm{b}+r_{2\mathrm{s}}\hat{\mathbf{y}}_\mathrm{s}\cdot\hat{\mathbf{z}}_\mathrm{b}+r_{3\mathrm{s}}\hat{\mathbf{z}}_\mathrm{s}\cdot\hat{\mathbf{z}}_\mathrm{b} \end{array} \right.\tag{4} r1b=r1sx^sx^b+r2sy^sx^b+r3sz^sx^br2b=r1sx^sy^b+r2sy^sy^b+r3sz^sy^br3b=r1sx^sz^b+r2sy^sz^b+r3sz^sz^b(4)

式(4)可进一步表示为
r b = [ r 1 b r 2 b r 3 b ] = [ x ^ s ⋅ x ^ b y ^ s ⋅ x ^ b z ^ s ⋅ x ^ b x ^ s ⋅ y ^ b y ^ s ⋅ y ^ b z ^ s ⋅ y ^ b x ^ s ⋅ z ^ b y ^ s ⋅ z ^ b z ^ s ⋅ z ^ b ] [ r 1 s r 2 s r 3 s ] = ( C b s ) T r s = C s b r s (5) \begin{aligned} \boldsymbol{r}^\mathrm{b}&=\begin{bmatrix} r_{1\mathrm{b}}\\ r_{2\mathrm{b}}\\ r_{3\mathrm{b}} \end{bmatrix} =\begin{bmatrix} \hat{\mathbf{x}}_\mathrm{s}\cdot\hat{\mathbf{x}}_\mathrm{b} & \hat{\mathbf{y}}_\mathrm{s}\cdot\hat{\mathbf{x}}_\mathrm{b} & \hat{\mathbf{z}}_\mathrm{s}\cdot\hat{\mathbf{x}}_\mathrm{b}\\ \hat{\mathbf{x}}_\mathrm{s}\cdot\hat{\mathbf{y}}_\mathrm{b} & \hat{\mathbf{y}}_\mathrm{s}\cdot\hat{\mathbf{y}}_\mathrm{b} & \hat{\mathbf{z}}_\mathrm{s}\cdot\hat{\mathbf{y}}_\mathrm{b} \\ \hat{\mathbf{x}}_\mathrm{s}\cdot\hat{\mathbf{z}}_\mathrm{b} & \hat{\mathbf{y}}_\mathrm{s}\cdot\hat{\mathbf{z}}_\mathrm{b} & \hat{\mathbf{z}}_\mathrm{s}\cdot\hat{\mathbf{z}}_\mathrm{b} \end{bmatrix}\begin{bmatrix} r_{1\mathrm{s}}\\ r_{2\mathrm{s}}\\ r_{3\mathrm{s}} \end{bmatrix}\\ &=(\boldsymbol{C}_\mathrm{b}^\mathrm{s})^\mathrm{T}\boldsymbol{r}^\mathrm{s}=\boldsymbol{C}_\mathrm{s}^\mathrm{b}\boldsymbol{r}^\mathrm{s} \end{aligned}\tag{5} rb=r1br2br3b=x^sx^bx^sy^bx^sz^by^sx^by^sy^by^sz^bz^sx^bz^sy^bz^sz^br1sr2sr3s=(Cbs)Trs=Csbrs(5)

式中, C s b = ( C b s ) T \boldsymbol{C}_\mathrm{s}^\mathrm{b}=(\boldsymbol{C}_\mathrm{b}^\mathrm{s})^\mathrm{T} Csb=(Cbs)T为从 s \mathrm{s} s系到 b \mathrm{b} b系的旋转矩阵。

考虑到 x ^ b , y ^ b , z ^ b \hat{\mathbf{x}}_\mathrm{b},\hat{\mathbf{y}}_\mathrm{b},\hat{\mathbf{z}}_\mathrm{b} x^b,y^b,z^b实际上也是三个矢量,因此它们也可以利用 s \mathrm{s} s { x ^ s , y ^ s , z ^ s } \{\hat{\mathbf{x}}_\mathrm{s},\hat{\mathbf{y}}_\mathrm{s},\hat{\mathbf{z}}_\mathrm{s}\} {x^s,y^s,z^s}进行表示,即有
{ x ^ b = l 1 x ^ s + m 1 y ^ s + n 1 z ^ s y ^ b = l 2 x ^ s + m 2 y ^ s + n 2 z ^ s z ^ b = l 3 x ^ s + m 3 y ^ s + n 3 z ^ s (6) \left\{ \begin{array}{ll} \hat{\mathbf{x}}_\mathrm{b}=l_1\hat{\mathbf{x}}_\mathrm{s}+m_1\hat{\mathbf{y}}_\mathrm{s}+n_1\hat{\mathbf{z}}_\mathrm{s}\\ \hat{\mathbf{y}}_\mathrm{b}=l_2\hat{\mathbf{x}}_\mathrm{s}+m_2\hat{\mathbf{y}}_\mathrm{s}+n_2\hat{\mathbf{z}}_\mathrm{s}\\ \hat{\mathbf{z}}_\mathrm{b}=l_3\hat{\mathbf{x}}_\mathrm{s}+m_3\hat{\mathbf{y}}_\mathrm{s}+n_3\hat{\mathbf{z}}_\mathrm{s} \end{array} \right.\tag{6} x^b=l1x^s+m1y^s+n1z^sy^b=l2x^s+m2y^s+n2z^sz^b=l3x^s+m3y^s+n3z^s(6)

则式(3)和(5)可进一步表示为
r s = [ r 1 s r 2 s r 3 s ] = [ l 1 l 2 l 3 m 1 m 2 m 3 n 1 n 2 n 3 ] [ r 1 b r 2 b r 3 b ] = [ x ^ b   y ^ b   z ^ b ] r b = C b s r b (7) \begin{aligned} \boldsymbol{r}^\mathrm{s}&=\begin{bmatrix} r_{1\mathrm{s}}\\ r_{2\mathrm{s}}\\ r_{3\mathrm{s}} \end{bmatrix}=\begin{bmatrix} l_1 & l_2 &l_3\\ m_1 & m_2 &m_3\\ n_1 & n_2 &n_3 \end{bmatrix}\begin{bmatrix} r_{1\mathrm{b}}\\ r_{2\mathrm{b}}\\ r_{3\mathrm{b}} \end{bmatrix}\\ &=[\hat{\mathbf{x}}_\mathrm{b}~\hat{\mathbf{y}}_\mathrm{b}~\hat{\mathbf{z}}_\mathrm{b}]\boldsymbol{r}^\mathrm{b}=\boldsymbol{C}_\mathrm{b}^\mathrm{s}\boldsymbol{r}^\mathrm{b} \end{aligned}\tag{7} rs=r1sr2sr3s=l1m1n1l2m2n2l3m3n3r1br2br3b=[x^b y^b z^b]rb=Cbsrb(7)

r b = [ x ^ b   y ^ b   z ^ b ] T r s = [ l 1 m 1 n 1 l 2 m 2 n 2 l 3 m 3 n 3 ] r s (8) \boldsymbol{r}^\mathrm{b}=[\hat{\mathbf{x}}_\mathrm{b}~\hat{\mathbf{y}}_\mathrm{b}~\hat{\mathbf{z}}_\mathrm{b}]^\mathrm{T}\boldsymbol{r}^\mathrm{s}=\begin{bmatrix} l_1 & m_1 &n_1\\ l_2 & m_2 &n_2\\ l_3 & m_3 &n_3 \end{bmatrix}\boldsymbol{r}^\mathrm{s}\tag{8} rb=[x^b y^b z^b]Trs=l1l2l3m1m2m3n1n2n3rs(8)

另一方面,考虑到 x ^ s , y ^ s , z ^ s \hat{\mathbf{x}}_\mathrm{s},\hat{\mathbf{y}}_\mathrm{s},\hat{\mathbf{z}}_\mathrm{s} x^s,y^s,z^s实际上也是三个矢量,因此它们也可以利用 b \mathrm{b} b { x ^ b , y ^ b , z ^ b } \{\hat{\mathbf{x}}_\mathrm{b},\hat{\mathbf{y}}_\mathrm{b},\hat{\mathbf{z}}_\mathrm{b}\} {x^b,y^b,z^b}进行表示,且由式(8)可知
{ x ^ s = l 1 x ^ b + l 2 y ^ b + l 3 z ^ b y ^ s = m 1 x ^ b + m 2 y ^ b + m 3 z ^ b z ^ s = n 1 x ^ b + n 2 y ^ b + n 3 z ^ b (9) \left\{ \begin{array}{ll} \hat{\mathbf{x}}_\mathrm{s}=l_1\hat{\mathbf{x}}_\mathrm{b}+l_2\hat{\mathbf{y}}_\mathrm{b}+l_3\hat{\mathbf{z}}_\mathrm{b}\\ \hat{\mathbf{y}}_\mathrm{s}=m_1\hat{\mathbf{x}}_\mathrm{b}+m_2\hat{\mathbf{y}}_\mathrm{b}+m_3\hat{\mathbf{z}}_\mathrm{b}\\ \hat{\mathbf{z}}_\mathrm{s}=n_1\hat{\mathbf{x}}_\mathrm{b}+n_2\hat{\mathbf{y}}_\mathrm{b}+n_3\hat{\mathbf{z}}_\mathrm{b} \end{array} \right.\tag{9} x^s=l1x^b+l2y^b+l3z^by^s=m1x^b+m2y^b+m3z^bz^s=n1x^b+n2y^b+n3z^b(9)

由于 x ^ s , y ^ s , z ^ s \hat{\mathbf{x}}_\mathrm{s},\hat{\mathbf{y}}_\mathrm{s},\hat{\mathbf{z}}_\mathrm{s} x^s,y^s,z^s x ^ b , y ^ b , z ^ b \hat{\mathbf{x}}_\mathrm{b},\hat{\mathbf{y}}_\mathrm{b},\hat{\mathbf{z}}_\mathrm{b} x^b,y^b,z^b均为相互正交的三个单位矢量,因此有
l 1 2 + m 1 2 + n 1 2 = 1 , l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 l 2 2 + m 2 2 + n 2 2 = 1 , l 1 l 3 + m 1 m 3 + n 1 n 3 = 0 l 3 2 + m 3 2 + n 3 2 = 1 , l 2 l 3 + m 2 m 3 + n 2 n 3 = 0 l 1 2 + l 2 2 + l 3 2 = 1 , l 1 m 1 + l 2 m 2 + l 3 m 3 = 0 m 1 2 + m 2 2 + m 3 2 = 1 , l 1 n 1 + l 2 n 2 + l 3 n 3 = 0 n 1 2 + n 2 2 + n 3 2 = 1 , m 1 n 1 + m 2 n 2 + m 3 n 3 = 0 (10) \begin{aligned} l_1^2+m_1^2+n_1^2&=1,& l_1l_2+m_1m_2+n_1n_2&=0\\ l_2^2+m_2^2+n_2^2&=1,& l_1l_3+m_1m_3+n_1n_3&=0\\ l_3^2+m_3^2+n_3^2&=1,& l_2l_3+m_2m_3+n_2n_3&=0\\ l_1^2+l_2^2+l_3^2&=1,& l_1m_1+l_2m_2+l_3m_3&=0\\ m_1^2+m_2^2+m_3^2&=1,& l_1n_1+l_2n_2+l_3n_3&=0\\ n_1^2+n_2^2+n_3^2&=1,& m_1n_1+m_2n_2+m_3n_3&=0 \end{aligned}\tag{10} l12+m12+n12l22+m22+n22l32+m32+n32l12+l22+l32m12+m22+m32n12+n22+n32=1,=1,=1,=1,=1,=1,l1l2+m1m2+n1n2l1l3+m1m3+n1n3l2l3+m2m3+n2n3l1m1+l2m2+l3m3l1n1+l2n2+l3n3m1n1+m2n2+m3n3=0=0=0=0=0=0(10)

由式(10)可知
C b s ( C b s ) T = [ l 1 l 2 l 3 m 1 m 2 m 3 n 1 n 2 n 3 ] [ l 1 m 1 n 1 l 2 m 2 n 2 l 3 m 3 n 3 ] = [ l 1 2 + l 2 2 + l 3 2 l 1 m 1 + l 2 m 2 + l 3 m 3 l 1 n 1 + l 2 n 2 + l 3 n 3 l 1 m 1 + l 2 m 2 + l 3 m 3 m 1 2 + m 2 2 + m 3 2 m 1 n 1 + m 2 n 2 + m 3 n 3 l 1 n 1 + l 2 n 2 + l 3 n 3 m 1 n 1 + m 2 n 2 + m 3 n 3 n 1 2 + n 2 2 + n 3 2 ] = I (11) \begin{aligned} &\boldsymbol{C}_\mathrm{b}^\mathrm{s}(\boldsymbol{C}_\mathrm{b}^\mathrm{s})^\mathrm{T}\\ =&\begin{bmatrix} l_1 & l_2 &l_3\\ m_1 & m_2 &m_3\\ n_1 & n_2 &n_3 \end{bmatrix} \begin{bmatrix} l_1 & m_1 &n_1\\ l_2 & m_2 &n_2\\ l_3 & m_3 &n_3 \end{bmatrix}\\ =&\begin{bmatrix} l_1^2+l_2^2+l_3^2 & l_1m_1+l_2m_2+l_3m_3 & l_1n_1+l_2n_2+l_3n_3\\ l_1m_1+l_2m_2+l_3m_3 & m_1^2+m_2^2+m_3^2 & m_1n_1+m_2n_2+m_3n_3\\ l_1n_1+l_2n_2+l_3n_3 & m_1n_1+m_2n_2+m_3n_3 & n_1^2+n_2^2+n_3^2 \end{bmatrix}\\ =&I \end{aligned}\tag{11} ===Cbs(Cbs)Tl1m1n1l2m2n2l3m3n3l1l2l3m1m2m3n1n2n3l12+l22+l32l1m1+l2m2+l3m3l1n1+l2n2+l3n3l1m1+l2m2+l3m3m12+m22+m32m1n1+m2n2+m3n3l1n1+l2n2+l3n3m1n1+m2n2+m3n3n12+n22+n32I(11)

( C b s ) T C b s = [ l 1 m 1 n 1 l 2 m 2 n 2 l 3 m 3 n 3 ] [ l 1 l 2 l 3 m 1 m 2 m 3 n 1 n 2 n 3 ] = [ l 1 2 + m 1 2 + n 1 2 l 1 l 2 + m 1 m 2 + n 1 n 2 l 1 l 3 + m 1 m 3 + n 1 n 3 l 1 l 2 + m 1 m 2 + n 1 n 2 l 2 2 + m 2 2 + n 2 2 l 2 l 3 + m 2 m 3 + n 2 n 3 l 1 l 3 + m 1 m 3 + n 1 n 3 l 2 l 3 + m 2 m 3 + n 2 n 3 l 3 2 + m 3 2 + n 3 2 ] = I (12) \begin{aligned} &(\boldsymbol{C}_\mathrm{b}^\mathrm{s})^\mathrm{T}\boldsymbol{C}_\mathrm{b}^\mathrm{s}\\ =&\begin{bmatrix} l_1 & m_1 &n_1\\ l_2 & m_2 &n_2\\ l_3 & m_3 &n_3 \end{bmatrix} \begin{bmatrix} l_1 & l_2 &l_3\\ m_1 & m_2 &m_3\\ n_1 & n_2 &n_3 \end{bmatrix}\\ =&\begin{bmatrix} l_1^2+m_1^2+n_1^2 & l_1l_2+m_1m_2+n_1n_2 & l_1l_3+m_1m_3+n_1n_3\\ l_1l_2+m_1m_2+n_1n_2 & l_2^2+m_2^2+n_2^2 & l_2l_3+m_2m_3+n_2n_3\\ l_1l_3+m_1m_3+n_1n_3 & l_2l_3+m_2m_3+n_2n_3 & l_3^2+m_3^2+n_3^2 \end{bmatrix}\\ =&I \end{aligned}\tag{12} ===(Cbs)TCbsl1l2l3m1m2m3n1n2n3l1m1n1l2m2n2l3m3n3l12+m12+n12l1l2+m1m2+n1n2l1l3+m1m3+n1n3l1l2+m1m2+n1n2l22+m22+n22l2l3+m2m3+n2n3l1l3+m1m3+n1n3l2l3+m2m3+n2n3l32+m32+n32I(12)

因此有
( C b s ) T = ( C b s ) − 1 (13) (\boldsymbol{C}_\mathrm{b}^\mathrm{s})^\mathrm{T}=(\boldsymbol{C}_\mathrm{b}^\mathrm{s})^{-1}\tag{13} (Cbs)T=(Cbs)1(13)

C b s \boldsymbol{C}_\mathrm{b}^\mathrm{s} Cbs为正交矩阵。进一步考虑到矩阵行列式性质(矩阵乘积的行列式等于矩阵行列式的乘积;矩阵转置后的行列式不变),可知 d e t ( C b s ) = ± 1 \mathbf{det}(\boldsymbol{C}_\mathrm{b}^\mathrm{s})=\pm1 det(Cbs)=±1,因此有
l 1 ( m 2 n 3 − m 3 n 2 ) − l 2 ( m 1 n 3 − m 3 n 1 ) + l 3 ( m 1 n 2 − m 2 n 1 ) = ± 1 (14) l_1(m_2n_3-m_3n_2)-l_2(m_1n_3-m_3n_1)+l_3(m_1n_2-m_2n_1)=\pm 1\tag{14} l1(m2n3m3n2)l2(m1n3m3n1)+l3(m1n2m2n1)=±1(14)

进一步考虑到 x ^ b , y ^ b , z ^ b \hat{\mathbf{x}}_\mathrm{b},\hat{\mathbf{y}}_\mathrm{b},\hat{\mathbf{z}}_\mathrm{b} x^b,y^b,z^b均为相互正交的三个单位矢量,相互之间的矢量叉积满足
x ^ b × y ^ b = z ^ b , y ^ b × z ^ b = x ^ b , z ^ b × x ^ b = y ^ b (15) \hat{\mathbf{x}}_\mathrm{b}\times\hat{\mathbf{y}}_\mathrm{b}=\hat{\mathbf{z}}_\mathrm{b},\hat{\mathbf{y}}_\mathrm{b}\times\hat{\mathbf{z}}_\mathrm{b}=\hat{\mathbf{x}}_\mathrm{b},\hat{\mathbf{z}}_\mathrm{b}\times\hat{\mathbf{x}}_\mathrm{b}=\hat{\mathbf{y}}_\mathrm{b}\tag{15} x^b×y^b=z^b,y^b×z^b=x^b,z^b×x^b=y^b(15)

结合式(9)和(15)可得
∣ x ^ b y ^ b z ^ b l 1 l 2 l 3 m 1 m 2 m 3 ∣ = n 1 x ^ b + n 2 y ^ b + n 3 z ^ b ∣ x ^ b y ^ b z ^ b m 1 m 2 m 3 n 1 n 2 n 3 ∣ = l 1 x ^ b + l 2 y ^ b + l 3 z ^ b ∣ x ^ b y ^ b z ^ b n 1 n 2 n 3 l 1 l 2 l 3 ∣ = m 1 x ^ b + m 2 y ^ b + m 3 z ^ b (16) \begin{aligned} \left\vert \begin{matrix} \hat{\mathbf{x}}_\mathrm{b} & \hat{\mathbf{y}}_\mathrm{b} & \hat{\mathbf{z}}_\mathrm{b} \\ l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{matrix} \right\vert&=n_1\hat{\mathbf{x}}_\mathrm{b}+n_2\hat{\mathbf{y}}_\mathrm{b}+n_3\hat{\mathbf{z}}_\mathrm{b}\\ \left\vert \begin{matrix} \hat{\mathbf{x}}_\mathrm{b} & \hat{\mathbf{y}}_\mathrm{b} & \hat{\mathbf{z}}_\mathrm{b} \\ m_1 & m_2 & m_3\\ n_1 & n_2 & n_3 \end{matrix} \right\vert&=l_1\hat{\mathbf{x}}_\mathrm{b}+l_2\hat{\mathbf{y}}_\mathrm{b}+l_3\hat{\mathbf{z}}_\mathrm{b}\\ \left\vert \begin{matrix} \hat{\mathbf{x}}_\mathrm{b} & \hat{\mathbf{y}}_\mathrm{b} & \hat{\mathbf{z}}_\mathrm{b} \\ n_1 & n_2 & n_3\\ l_1 & l_2 & l_3 \end{matrix} \right\vert&=m_1\hat{\mathbf{x}}_\mathrm{b}+m_2\hat{\mathbf{y}}_\mathrm{b}+m_3\hat{\mathbf{z}}_\mathrm{b} \end{aligned}\tag{16} x^bl1m1y^bl2m2z^bl3m3x^bm1n1y^bm2n2z^bm3n3x^bn1l1y^bn2l2z^bn3l3=n1x^b+n2y^b+n3z^b=l1x^b+l2y^b+l3z^b=m1x^b+m2y^b+m3z^b(16)

对式(16)进一步整理可得
l 1 = m 2 n 3 − m 3 n 2 , l 2 = m 3 n 1 − m 1 n 3 , l 3 = m 1 n 2 − m 2 n 1 m 1 = n 2 l 3 − n 3 l 2 , m 2 = n 3 l 1 − n 1 l 3 , m 3 = n 1 l 2 − n 2 l 1 n 1 = l 2 m 3 − l 3 m 2 , n 2 = l 3 m 1 − l 1 m 3 , n 3 = l 1 m 2 − l 2 m 1 (17) \begin{aligned} l_1&=m_2n_3-m_3n_2,&l_2&=m_3n_1-m_1n_3,&l_3&=m_1n_2-m_2n_1\\ m_1&=n_2l_3-n_3l_2,&m_2&=n_3l_1-n_1l_3,&m_3&=n_1l_2-n_2l_1\\ n_1&=l_2m_3-l_3m_2,&n_2&=l_3m_1-l_1m_3,&n_3&=l_1m_2-l_2m_1 \end{aligned}\tag{17} l1m1n1=m2n3m3n2,=n2l3n3l2,=l2m3l3m2,l2m2n2=m3n1m1n3,=n3l1n1l3,=l3m1l1m3,l3m3n3=m1n2m2n1=n1l2n2l1=l1m2l2m1(17)

结合式(10)与式(17)可得
l 1 ( m 2 n 3 − m 3 n 2 ) − l 2 ( m 1 n 3 − m 3 n 1 ) + l 3 ( m 1 n 2 − m 2 n 1 ) = 1 (18) l_1(m_2n_3-m_3n_2)-l_2(m_1n_3-m_3n_1)+l_3(m_1n_2-m_2n_1)=1\tag{18} l1(m2n3m3n2)l2(m1n3m3n1)+l3(m1n2m2n1)=1(18)

d e t ( C b s ) = 1 \mathbf{det}(\boldsymbol{C}_\mathrm{b}^\mathrm{s})=1 det(Cbs)=1

我们以 s \mathrm{s} s系为基准系,进一步考虑旋转矩阵 C s b \boldsymbol{C}_\mathrm{s}^\mathrm{b} Csb,根据式(7)和(8)有 C s b = [ x ^ b   y ^ b   z ^ b ] T \boldsymbol{C}_\mathrm{s}^\mathrm{b}=[\hat{\mathbf{x}}_\mathrm{b}~\hat{\mathbf{y}}_\mathrm{b}~\hat{\mathbf{z}}_\mathrm{b}]^\mathrm{T} Csb=[x^b y^b z^b]T。设 b 1 \mathrm{b_1} b1系为 s \mathrm{s} s系绕 z ^ s \hat{\mathbf{z}}_\mathrm{s} z^s轴正向旋转 θ \theta θ角,如图1所示。

图1  s 系绕 z ^ s 轴正向旋转 θ 角 \text{图1 $\mathrm{s}$系绕$\hat{\mathbf{z}}_\mathrm{s}$轴正向旋转$\theta$角} s系绕z^s轴正向旋转θ

则有
{ x ^ b 1 = cos ⁡ ( θ ) x ^ s + sin ⁡ ( θ ) y ^ s y ^ b 1 = − sin ⁡ ( θ ) x ^ s + cos ⁡ ( θ ) y ^ s z ^ b 1 = z ^ s (19) \left\{ \begin{array}{ll} \hat{\mathbf{x}}_{\mathrm{b}_1}=\cos(\theta)\hat{\mathbf{x}}_\mathrm{s}+\sin(\theta)\hat{\mathbf{y}}_\mathrm{s}\\ \hat{\mathbf{y}}_{\mathrm{b}_1}=-\sin(\theta)\hat{\mathbf{x}}_\mathrm{s}+\cos(\theta)\hat{\mathbf{y}}_\mathrm{s}\\ \hat{\mathbf{z}}_{\mathrm{b}_1}=\hat{\mathbf{z}}_\mathrm{s} \end{array} \right.\tag{19} x^b1=cos(θ)x^s+sin(θ)y^sy^b1=sin(θ)x^s+cos(θ)y^sz^b1=z^s(19)

因此
C s b 1 = [ x ^ b 1   y ^ b 1   z ^ b 1 ] T = [ cos ⁡ ( θ ) sin ⁡ ( θ ) 0 − sin ⁡ ( θ ) cos ⁡ ( θ ) 0 0 0 1 ] (20) \boldsymbol{C}_\mathrm{s}^{\mathrm{b}_1}=[\hat{\mathbf{x}}_{\mathrm{b}_1}~\hat{\mathbf{y}}_{\mathrm{b}_1}~\hat{\mathbf{z}}_{\mathrm{b}_1}]^\mathrm{T}=\begin{bmatrix} \cos(\theta) & \sin(\theta) & 0\\ -\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}\tag{20} Csb1=[x^b1 y^b1 z^b1]T=cos(θ)sin(θ)0sin(θ)cos(θ)0001(20)

我们将式(20)中的旋转矩阵记为 R ( z ^ , θ ) \boldsymbol{R}(\hat{\mathbf{z}},\theta) R(z^,θ)(为简便起见,后续我们将 x ^ s , y ^ s , z ^ s \hat{\mathbf{x}}_\mathrm{s},\hat{\mathbf{y}}_\mathrm{s},\hat{\mathbf{z}}_\mathrm{s} x^s,y^s,z^s简写为 x ^ , y ^ , z ^ \hat{\mathbf{x}},\hat{\mathbf{y}},\hat{\mathbf{z}} x^,y^,z^,在不至于引起混淆的前提下,根据需要也会将 x ^ , y ^ , z ^ \hat{\mathbf{x}},\hat{\mathbf{y}},\hat{\mathbf{z}} x^,y^,z^视为不同坐标系的轴向的单位矢量),类似可得
R ( x ^ , θ ) = [ 1 0 0 0 cos ⁡ ( θ ) sin ⁡ ( θ ) 0 − sin ⁡ ( θ ) cos ⁡ ( θ ) ] ,   R ( y ^ , θ ) = [ cos ⁡ ( θ ) 0 − sin ⁡ ( θ ) 0 1 0 sin ⁡ ( θ ) 0 cos ⁡ ( θ ) ] (21) \boldsymbol{R}(\hat{\mathbf{x}},\theta)=\begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\theta) & \sin(\theta)\\ 0 & -\sin(\theta) & \cos(\theta)\\ \end{bmatrix},~ \boldsymbol{R}(\hat{\mathbf{y}},\theta)=\begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta)\\ 0 & 1 & 0\\ \sin(\theta) & 0 & \cos(\theta)\\ \end{bmatrix}\tag{21} R(x^,θ)=1000cos(θ)sin(θ)0sin(θ)cos(θ), R(y^,θ)=cos(θ)0sin(θ)010sin(θ)0cos(θ)(21)

注意从 y ^ \hat{\mathbf{y}} y^轴正向看 x ^ z ^ \hat{\mathbf{x}}\hat{\mathbf{z}} x^z^平面时,根据右手坐标系的关系可知 x ^ \hat{\mathbf{x}} x^轴水平朝左, z ^ \hat{\mathbf{z}} z^轴水平朝上,逆时针旋转 θ \theta θ角后 x ^ \hat{\mathbf{x}} x^轴跑到水平面下方了,因此 R ( y ^ , θ ) \boldsymbol{R}(\hat{\mathbf{y}},\theta) R(y^,θ) sin ⁡ ( θ ) \sin(\theta) sin(θ) − sin ⁡ ( θ ) -\sin(\theta) sin(θ)的位置正好与 R ( x ^ , θ ) \boldsymbol{R}(\hat{\mathbf{x}},\theta) R(x^,θ) R ( z ^ , θ ) \boldsymbol{R}(\hat{\mathbf{z}},\theta) R(z^,θ)对称。对于 R ( z ^ , θ ) \boldsymbol{R}(\hat{\mathbf{z}},\theta) R(z^,θ),有
R ( z ^ , θ ) x ^ = cos ⁡ ( θ ) x ^ − sin ⁡ ( θ ) y ^ = cos ⁡ ( θ ) x ^ − sin ⁡ ( θ ) z ^ × x ^ , R ( z ^ , θ ) y ^ = cos ⁡ ( θ ) y ^ + sin ⁡ ( θ ) x ^ = cos ⁡ ( θ ) y ^ − sin ⁡ ( θ ) z ^ × y ^ R ( z ^ , θ ) z ^ = z ^ (22) \begin{aligned} \boldsymbol{R}(\hat{\mathbf{z}},\theta)\hat{\mathbf{x}}&=\cos(\theta)\hat{\mathbf{x}}-\sin(\theta)\hat{\mathbf{y}}=\cos(\theta)\hat{\mathbf{x}}-\sin(\theta)\hat{\mathbf{z}}\times\hat{\mathbf{x}},\\ \boldsymbol{R} (\hat{\mathbf{z}},\theta)\hat{\mathbf{y}}&=\cos(\theta)\hat{\mathbf{y}}+\sin(\theta)\hat{\mathbf{x}}=\cos(\theta)\hat{\mathbf{y}}-\sin(\theta)\hat{\mathbf{z}}\times\hat{\mathbf{y}}\\ \boldsymbol{R} (\hat{\mathbf{z}},\theta)\hat{\mathbf{z}}&=\hat{\mathbf{z}} \end{aligned}\tag{22} R(z^,θ)x^R(z^,θ)y^R(z^,θ)z^=cos(θ)x^sin(θ)y^=cos(θ)x^sin(θ)z^×x^,=cos(θ)y^+sin(θ)x^=cos(θ)y^sin(θ)z^×y^=z^(22)

R ( x ^ , θ ) \boldsymbol{R}(\hat{\mathbf{x}},\theta) R(x^,θ) R ( y ^ , θ ) \boldsymbol{R}(\hat{\mathbf{y}},\theta) R(y^,θ)也有类似性质。一般地,设 n ^ \hat{\mathbf{n}} n^为任意单位矢量, v ⊥ \mathbf{v}_\perp v为任意矢量 v \mathbf{v} v在与 n ^ \hat{\mathbf{n}} n^垂直平面上的投影, v ∥ \mathbf{v}_\parallel v为矢量 v \mathbf{v} v n ^ \hat{\mathbf{n}} n^方向上的投影, R ( n ^ , θ ) \boldsymbol{R}(\hat{\mathbf{n}},\theta) R(n^,θ)表示绕 n ^ \hat{\mathbf{n}} n^正向旋转 θ \theta θ角对应的旋转矩阵,则有
R ( n ^ , θ ) v = v ∥ + cos ⁡ ( θ ) v ⊥ − sin ⁡ ( θ ) n ^ × v ⊥ = v ∥ + cos ⁡ ( θ ) v ⊥ + sin ⁡ ( θ ) [ [ n ^ ] ] v ⊥ (23) \begin{aligned} \boldsymbol{R}(\hat{\mathbf{n}},\theta)\mathbf{v}&=\mathbf{v}_\parallel+\cos(\theta)\mathbf{v}_\perp-\sin(\theta)\hat{\mathbf{n}}\times\mathbf{v}_\perp\\ &=\mathbf{v}_\parallel+\cos(\theta)\mathbf{v}_\perp+\sin(\theta)[[\hat{\mathbf{n}}]]\mathbf{v}_\perp \end{aligned}\tag{23} R(n^,θ)v=v+cos(θ)vsin(θ)n^×v=v+cos(θ)v+sin(θ)[[n^]]v(23)

其中 [ [ n ^ ] ] [[\hat{\mathbf{n}}]] [[n^]]为与 n ^ \hat{\mathbf{n}} n^对应的反对称阵,即设 n ^ = [ n 1 , n 2 , n 3 ] T \hat{\mathbf{n}}=[n_1,n_2,n_3]^\mathrm{T} n^=[n1,n2,n3]T,则有
[ [ n ^ ] ] = [ 0 n 3 − n 2 − n 3 0 n 1 n 2 − n 1 0 ] (24) [[\hat{\mathbf{n}}]]=\begin{bmatrix} 0 & n_3 & -n_2\\ -n_3 & 0 & n_1\\ n_2 & -n_1 & 0 \end{bmatrix}\tag{24} [[n^]]=0n3n2n30n1n2n10(24)

对任意两个矢量 a \mathbf{a} a b \mathbf{b} b,由式(24)中的定义可知 a × b = − [ [ a ] ] b \mathbf{a}\times\mathbf{b}=-[[\mathbf{a}]]\mathbf{b} a×b=[[a]]b,有的文献也定义 − [ [ a ] ] -[[\mathbf{a}]] [[a]]为与 a \mathbf{a} a对应的反对称阵,这个看个人习惯。

考虑矢量三重叉积公式
a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c (25) \mathbf{a}\times(\mathbf{b}\times\mathbf{c})=(\mathbf{a}\cdot\mathbf{c})\mathbf{b}-(\mathbf{a}\cdot\mathbf{b})\mathbf{c}\tag{25} a×(b×c)=(ac)b(ab)c(25)

在式(25)中取 a = b = n ^ \mathbf{a}=\mathbf{b}=\hat{\mathbf{n}} a=b=n^ c = v \mathbf{c}=\mathbf{v} c=v,则有
v = ( n ^ ⋅ v ) n ^ − n ^ × ( n ^ × v ) = n ^ n ^ T v − [ [ n ^ ] ] 2 v = v ∥ + v ⊥ (26) \begin{aligned} \mathbf{v}&=(\hat{\mathbf{n}}\cdot\mathbf{v})\hat{\mathbf{n}}-\hat{\mathbf{n}}\times(\hat{\mathbf{n}}\times\mathbf{v})\\ &=\hat{\mathbf{n}}\hat{\mathbf{n}}^\mathrm{T}\mathbf{v}-[[\hat{\mathbf{n}}]]^2\mathbf{v}\\ &=\mathbf{v}_\parallel+\mathbf{v}_\perp \end{aligned}\tag{26} v=(n^v)n^n^×(n^×v)=n^n^Tv[[n^]]2v=v+v(26)

结合式(23)和(26)可知
R ( n ^ , θ ) v = n ^ n ^ T v − cos ⁡ ( θ ) [ [ n ^ ] ] 2 v − sin ⁡ ( θ ) [ [ n ^ ] ] 3 v = n ^ n ^ T v − cos ⁡ ( θ ) [ [ n ^ ] ] 2 v + sin ⁡ ( θ ) [ [ n ^ ] ] v (27) \begin{aligned} \boldsymbol{R}(\hat{\mathbf{n}},\theta)\mathbf{v}&=\hat{\mathbf{n}}\hat{\mathbf{n}}^\mathrm{T}\mathbf{v}-\cos(\theta)[[\hat{\mathbf{n}}]]^2\mathbf{v}-\sin(\theta)[[\hat{\mathbf{n}}]]^3\mathbf{v}\\ &=\hat{\mathbf{n}}\hat{\mathbf{n}}^\mathrm{T}\mathbf{v}-\cos(\theta)[[\hat{\mathbf{n}}]]^2\mathbf{v}+\sin(\theta)[[\hat{\mathbf{n}}]]\mathbf{v} \end{aligned}\tag{27} R(n^,θ)v=n^n^Tvcos(θ)[[n^]]2vsin(θ)[[n^]]3v=n^n^Tvcos(θ)[[n^]]2v+sin(θ)[[n^]]v(27)

式(27)中用到了反对称阵的性质 [ [ n ^ ] ] 3 = − ∥ n ^ ∥ 2 [ [ n ^ ] ] = − [ [ n ^ ] ] [[\hat{\mathbf{n}}]]^3=-\Vert\hat{\mathbf{n}}\Vert^2[[\hat{\mathbf{n}}]]=-[[\hat{\mathbf{n}}]] [[n^]]3=n^2[[n^]]=[[n^]]。由于 v \mathbf{v} v为任意矢量,因此有
R ( n ^ , θ ) = n ^ n ^ T − cos ⁡ ( θ ) [ [ n ^ ] ] 2 + sin ⁡ ( θ ) [ [ n ^ ] ] = cos ⁡ ( θ ) I + ( 1 − cos ⁡ ( θ ) ) n ^ n ^ T + sin ⁡ ( θ ) [ [ n ^ ] ] (28) \begin{aligned} \boldsymbol{R}(\hat{\mathbf{n}},\theta)&=\hat{\mathbf{n}}\hat{\mathbf{n}}^\mathrm{T}-\cos(\theta)[[\hat{\mathbf{n}}]]^2+\sin(\theta)[[\hat{\mathbf{n}}]]\\ &=\cos(\theta)I+(1-\cos(\theta))\hat{\mathbf{n}}\hat{\mathbf{n}}^\mathrm{T}+\sin(\theta)[[\hat{\mathbf{n}}]] \end{aligned}\tag{28} R(n^,θ)=n^n^Tcos(θ)[[n^]]2+sin(θ)[[n^]]=cos(θ)I+(1cos(θ))n^n^T+sin(θ)[[n^]](28)

式(28)中用到了反对称阵的性质 [ [ a ] ] [ [ b ] ] = − ( a ⋅ b ) I + b a T [[\mathbf{a}]][[\mathbf{b}]]=-(\mathbf{a}\cdot\mathbf{b})I+\mathbf{b}\mathbf{a}^\mathrm{T} [[a]][[b]]=(ab)I+baT,取 a = b = n ^ \mathbf{a}=\mathbf{b}=\hat{\mathbf{n}} a=b=n^可得 [ [ n ^ ] ] 2 = − I + n ^ n ^ T [[\hat{\mathbf{n}}]]^2=-I+\hat{\mathbf{n}}\hat{\mathbf{n}}^\mathrm{T} [[n^]]2=I+n^n^T,式(28)也可进一步写为
R ( n ^ , θ ) = I + sin ⁡ ( θ ) [ [ n ^ ] ] + ( 1 − cos ⁡ ( θ ) ) [ [ n ^ ] ] 2 (29) \boldsymbol{R}(\hat{\mathbf{n}},\theta)=I+\sin(\theta)[[\hat{\mathbf{n}}]]+ (1-\cos(\theta))[[\hat{\mathbf{n}}]]^2\tag{29} R(n^,θ)=I+sin(θ)[[n^]]+(1cos(θ))[[n^]]2(29)

将式(29)写成分量形式,可得
R ( n ^ , θ ) = [ cos ⁡ ( θ ) + n 1 2 ( 1 − cos ⁡ ( θ ) ) n 1 n 2 ( 1 − cos ⁡ ( θ ) ) + n 3 sin ⁡ ( θ ) n 1 n 3 ( 1 − cos ⁡ ( θ ) ) − n 2 sin ⁡ ( θ ) n 2 n 1 ( 1 − cos ⁡ ( θ ) ) − n 3 sin ⁡ ( θ ) cos ⁡ ( θ ) + n 2 2 ( 1 − cos ⁡ ( θ ) ) n 2 n 3 ( 1 − cos ⁡ ( θ ) ) + n 1 sin ⁡ ( θ ) n 3 n 1 ( 1 − cos ⁡ ( θ ) ) + n 2 sin ⁡ ( θ ) n 3 n 2 ( 1 − cos ⁡ ( θ ) ) − n 1 sin ⁡ ( θ ) cos ⁡ ( θ ) + n 3 2 ( 1 − cos ⁡ ( θ ) ) ] ( 30 ) \begin{aligned} &\boldsymbol{R}(\hat{\mathbf{n}},\theta)\\ =&\begin{bmatrix} \cos(\theta)+n_1^2(1-\cos(\theta)) & n_1n_2(1-\cos(\theta))+n_3\sin(\theta) & n_1n_3(1-\cos(\theta))-n_2\sin(\theta)\\ n_2n_1(1-\cos(\theta))-n_3\sin(\theta) & \cos(\theta)+n_2^2(1-\cos(\theta)) & n_2n_3(1-\cos(\theta))+n_1\sin(\theta)\\ n_3n_1(1-\cos(\theta))+n_2\sin(\theta) & n_3n_2(1-\cos(\theta))-n_1\sin(\theta) & \cos(\theta)+n_3^2(1-\cos(\theta)) \end{bmatrix}(30) \end{aligned} =R(n^,θ)cos(θ)+n12(1cos(θ))n2n1(1cos(θ))n3sin(θ)n3n1(1cos(θ))+n2sin(θ)n1n2(1cos(θ))+n3sin(θ)cos(θ)+n22(1cos(θ))n3n2(1cos(θ))n1sin(θ)n1n3(1cos(θ))n2sin(θ)n2n3(1cos(θ))+n1sin(θ)cos(θ)+n32(1cos(θ))(30)

若已知 R ( n ^ , θ ) \boldsymbol{R}(\hat{\mathbf{n}},\theta) R(n^,θ),则根据式(30)可知
cos ⁡ θ = 1 2 ( t r R − 1 ) (31) \cos{\theta}=\frac{1}{2}(\mathrm{tr}\boldsymbol{R}-1)\tag{31} cosθ=21(trR1)(31)

sin ⁡ ( θ ) ≠ 0 \sin(\theta)\neq 0 sin(θ)=0时,有
n ^ = 1 2 sin ⁡ ( θ ) [ R 23 − R 32 R 31 − R 13 R 12 − R 21 ] (32) \hat{\mathbf{n}}=\frac{1}{2\sin(\theta)}\begin{bmatrix} R_{23}-R_{32}\\ R_{31}-R_{13}\\ R_{12}-R_{21} \end{bmatrix}\tag{32} n^=2sin(θ)1R23R32R31R13R12R21(32)

θ = 0 \theta=0 θ=0时, n ^ \hat{\mathbf{n}} n^没有物理意义;当 θ = π \theta=\pi θ=π时, R ( n ^ , π ) = − I + 2 n ^ n ^ T \boldsymbol{R}(\hat{\mathbf{n}},\pi)=-I+2\hat{\mathbf{n}}\hat{\mathbf{n}}^\mathrm{T} R(n^,π)=I+2n^n^T,此时 R ( n ^ , π ) + I \boldsymbol{R}(\hat{\mathbf{n}},\pi)+I R(n^,π)+I的三个列均与 n ^ \hat{\mathbf{n}} n^平行,而 n ^ \hat{\mathbf{n}} n^的方向则不影响结果。

至此,我们获得了旋转矩阵的一些初步性质。

参考文献

[1]Battin RH. An introduction to the mathematics and methods of astrodynamics, revised edition. American Institute of Aeronautics and Astronautics; 1999.

[2]Shuster MD. A survey of attitude representations. Navigation. 1993;8(9):439-517.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值