关于自抗扰控制的稳定性分析

前面3篇博客分析了扩张状态观测器(ESO)收敛性分析的套路,基本上是过了一遍原文献的证明步骤,穿插一些说明,目的在于让人看清证明背后的思想。考虑到ESO是自抗扰控制(ADRC)的核心,因此ADRC的稳定性证明套路其实在一定程度上也借鉴了ESO收敛性套路。文献[1]首次给出了多输入多输出系统ADRC稳定性的完整证明,但其使用的符号比较多,且数学味过于浓厚,毕竟文献[1]对应的期刊其实是一本数学期刊,不太容易吸引人阅读,不过其证明的实质套路一直得到了传承和发扬,此后一连串的文献都沿袭了文献[1]的套路,比如文献[2]。因此,如果想知道ADRC的稳定性证明套路,文献[2]值得推荐,比文献[1]的可读性强一些。

这里不打算再像之前博客那样过一遍文献[2]的证明步骤了,仅仅分析其思想,因此只罗列部分公式以对套路进行辅助说明,感兴趣的读者可以直接找来文献[2]仔细研读。文献[2]考虑下面的下三角形式的系统:
{ x ˙ 1 ( t ) = x 2 ( t ) + h 1 ( x 1 ( t ) , ζ ( t ) , w ( t ) ) , x ˙ 2 ( t ) = x 3 ( t ) + h 2 ( x 1 ( t ) , x 2 ( t ) , ζ ( t ) , w ( t ) ) , ⋮ x ˙ n ( t ) = f ( t , x ( t ) , ζ ( t ) , w ( t ) ) + b ( t , w ( t ) ) u ( t ) , ζ ˙ ( t ) = f 0 ( x 1 ( t ) , , ζ ( t ) , w ( t ) ) , y ( t ) = x 1 ( t ) , (1) \left\{\begin{aligned} &\dot{x}_1(t)=x_2(t)+h_1(x_1(t),\zeta(t),w(t)),\\ &\dot{x}_2(t)=x_3(t)+h_2(x_1(t),x_2(t),\zeta(t),w(t)),\\ &\vdots\\ &\dot{x}_n(t)=f(t,x(t),\zeta(t),w(t))+b(t,w(t))u(t),\\ &\dot{\zeta}(t)=f_0(x_1(t),,\zeta(t),w(t)),\\ &y(t)=x_1(t), \end{aligned}\right.\tag{1} x˙1(t)=x2(t)+h1(x1(t),ζ(t),w(t)),x˙2(t)=x3(t)+h2(x1(t),x2(t),ζ(t),w(t)),x˙n(t)=f(t,x(t),ζ(t),w(t))+b(t,w(t))u(t),ζ˙(t)=f0(x1(t),,ζ(t),w(t)),y(t)=x1(t),(1)
其中, x ( t ) = ( x 1 ( t ) , … , x n ( t ) ) ∈ R n x(t)=(x_1(t),\ldots,x_n(t))\in\mathbb{R}^n x(t)=(x1(t),,xn(t))Rn为系统状态, ζ ( t ) ∈ R m \zeta(t)\in\mathbb{R}^m ζ(t)Rm为所谓的零动态(控制理论喜欢玩的一套,这里仅仅为了增加公式表面复杂性来装B), y ( t ) y(t) y(t)为输出, u ( t ) u(t) u(t)为控制输入, w ( t ) w(t) w(t)为外部干扰, b b b为不知道准确值的控制系数,但是有一个比较接近的名义值 b 0 b_0 b0,事实上,要是 b b b完全未知,那么理论推导导相当复杂,可以说,ADRC里面最关键的参数就是这个 b b b了。

直接考虑系统(1)的ADRC不太容易,考虑一般ADRC的文章喜欢积分形式的系统,因此ADRC设计的第一步就是利用坐标变换把系统(1)转化为积分形式,文献[2]采用了反馈线性化里面的常规操作:

{ x ˉ 1 ( t ) = x 1 ( t ) , x ˉ 2 ( t ) = x 2 ( t ) + h 1 ( x 1 ( t ) , ζ ( t ) , w ( t ) ) , x ˉ i ( t ) = x i ( t ) + ∑ j = 1 i − 1 h i − j ( j − 1 ) ( x 1 ( t ) , … , x i − j ( t ) , ζ ( t ) , w ( t ) ) , 3 ≤ j ≤ n , (2) \left\{\begin{aligned} &\bar{x}_1(t)=x_1(t),\\ &\bar{x}_2(t)=x_2(t)+h_1(x_1(t),\zeta(t),w(t)),\\ &\bar{x}_i(t)=x_i(t)+\sum_{j=1}^{i-1}h_{i-j}^{(j-1)}(x_1(t),\ldots,x_{i-j}(t),\zeta(t),w(t)),3\leq j\leq n,\end{aligned}\right.\tag{2} xˉ1(t)=x1(t),xˉ2(t)=x2(t)+h1(x1(t),ζ(t),w(t)),xˉi(t)=xi(t)+j=1i1hij(j1)(x1(t),,xij(t),ζ(t),w(t)),3jn,(2)
其中, h i − j ( j − 1 ) ( ⋅ ) h_{i-j}^{(j-1)}(\cdot) hij(j1)() h i − j ( ⋅ ) h_{i-j}(\cdot) hij()对时间变量 t t t ( j − 1 ) (j-1) (j1)阶导数,这样转换后,利用新的状态变量 x ˉ ( t ) = ( x ˉ 1 ( t ) , … , x ˉ n ( t ) ) \bar{x}(t)=(\bar{x}_1(t),\ldots,\bar{x}_n(t)) xˉ(t)=(xˉ1(t),,xˉn(t)),系统可写为如下的积分链形式:
{ x ˉ ˙ 1 ( t ) = x ˉ 2 ( t ) , x ˉ ˙ 2 ( t ) = x ˉ 3 ( t ) , ⋮ x ˉ ˙ n ( t ) = x ˉ n + 1 ( t ) + b 0 ( t ) u ( t ) , y ( t ) = x ˉ 1 ( t ) , (3) \left\{\begin{aligned} &\dot{\bar{x}}_1(t)=\bar{x}_2(t),\\ &\dot{\bar{x}}_2(t)=\bar{x}_3(t),\\ &\vdots\\ &\dot{\bar{x}}_n(t)=\bar{x}_{n+1}(t)+b_0(t)u(t),\\ &y(t)=\bar{x}_1(t), \end{aligned}\right.\tag{3} xˉ˙1(t)=xˉ2(t),xˉ˙2(t)=xˉ3(t),xˉ˙n(t)=xˉn+1(t)+b0(t)u(t),y(t)=xˉ1(t),(3)
系统(3)单独提取出了 b 0 ( t ) u ( t ) b_0(t)u(t) b0(t)u(t)这一项以方便控制器设计,因此总扰动 x ˉ n + 1 ( t ) \bar{x}_{n+1}(t) xˉn+1(t)的表达式为
x ˉ n + 1 ( t ) = f ( t , x ( t ) , ζ ( t ) , w ( t ) ) + ( b ( t , w ( t ) ) − b 0 ( t ) ) u ( t ) + ∑ j = 1 n − 1 h n − j ( j ) ( x 1 ( t ) , … , x n − j ( t ) , ζ ( t ) , w ( t ) ) . (4) \begin{aligned} \bar{x}_{n+1}(t)=&f(t,x(t),\zeta(t),w(t))+(b(t,w(t))-b_0(t))u(t)\\ &+\sum_{j=1}^{n-1}h_{n-j}^{(j)}(x_1(t),\ldots,x_{n-j}(t),\zeta(t),w(t)).\end{aligned}\tag{4} xˉn+1(t)=f(t,x(t),ζ(t),w(t))+(b(t,w(t))b0(t))u(t)+j=1n1hnj(j)(x1(t),,xnj(t),ζ(t),w(t)).(4)
这样一来,系统形式整理完毕,控制目标是在初值有界的前提下,状态 ( x ( t ) , ζ ( t ) ) (x(t),\zeta(t)) (x(t),ζ(t))始终有界,输出 y ( t ) y(t) y(t)能跟踪给定的有界参考信号 r ( t ) r(t) r(t),且 r ( t ) r(t) r(t)的各阶导数 r ˙ ( t ) \dot{r}(t) r˙(t) r ¨ ( t ) \ddot{r}(t) r¨(t) … \ldots r ( n ) ( t ) r^{(n)}(t) r(n)(t)均有界,并记为
( r 1 ( t ) , r 2 ( t ) , … , r n + 1 ( t ) ) = ( r ( t ) , r ˙ ( t ) , … , r ( n ) ( t ) ) . (5) (r_1(t),r_2(t),\ldots,r_{n+1}(t))=(r(t),\dot{r}(t),\ldots,r^{(n)}(t)).\tag{5} (r1(t),r2(t),,rn+1(t))=(r(t),r˙(t),,r(n)(t)).(5)
接下来可以给出ADRC的结构了,ESO的形式为
{ x ˉ ^ ˙ 1 ( t ) = x ˉ ^ 2 ( t ) + ε n − 1 g 1 ( η 1 ( t ) ) , x ˉ ^ ˙ 2 ( t ) = x ˉ ^ 3 ( t ) + ε n − 2 g 2 ( η 1 ( t ) ) , ⋮ x ˉ ^ ˙ n ( t ) = x ˉ ^ n + 1 ( t ) + g n ( η 1 ( t ) ) + b 0 ( t ) u ( t ) , x ˉ ^ ˙ n + 1 ( t ) = 1 ε g n + 1 ( η 1 ( t ) ) , η 1 ( t ) = y ( t ) − x ˉ ^ 1 ( t ) ε n , (6) \left\{\begin{aligned} &\dot{\hat{\bar{x}}}_1(t)=\hat{\bar{x}}_2(t)+\varepsilon^{n-1}g_1(\eta_1(t)),\\ &\dot{\hat{\bar{x}}}_2(t)=\hat{\bar{x}}_3(t)+\varepsilon^{n-2}g_2(\eta_1(t)),\\ &\vdots\\ &\dot{\hat{\bar{x}}}_n(t)=\hat{\bar{x}}_{n+1}(t)+g_n(\eta_1(t))+b_0(t)u(t),\\ &\dot{\hat{\bar{x}}}_{n+1}(t)=\frac{1}{\varepsilon}g_{n+1}(\eta_1(t)),\eta_1(t)=\frac{y(t)-\hat{\bar{x}}_1(t)}{\varepsilon^n},\end{aligned}\right.\tag{6} xˉ^˙1(t)=xˉ^2(t)+εn1g1(η1(t)),xˉ^˙2(t)=xˉ^3(t)+εn2g2(η1(t)),xˉ^˙n(t)=xˉ^n+1(t)+gn(η1(t))+b0(t)u(t),xˉ^˙n+1(t)=ε1gn+1(η1(t)),η1(t)=εny(t)xˉ^1(t),(6)
还是熟悉的配方, g i ∈ C ( R ; R ) g_i\in C(\mathbb{R};\mathbb{R}) giC(R;R) i = 1 , 2 , … , n + 1 i=1,2,\ldots,n+1 i=1,2,,n+1为设计函数, ε > 0 \varepsilon>0 ε>0为调节参数。与单独ESO收敛性分析不同的是,这里还需要给出 u ( t ) u(t) u(t)的表达式,由于系统已经转换为了积分链形式,因此可以直接给出
u ( t ) = 1 b 0 ( t ) [ ρ ( s a t Q 1 ( x ˉ ^ 1 ( t ) − r 1 ( t ) ) , … , s a t Q n ( x ˉ ^ n ( t ) − r n ( t ) ) ) − s a t Q n + 1 ( x ˉ ^ n + 1 ( t ) ) + r n + 1 ( t ) ] , (7) u(t)=\frac{1}{b_0(t)}\left[\rho\left(\mathrm{sat}_{Q_1}(\hat{\bar{x}}_1(t)-r_1(t)),\ldots,\mathrm{sat}_{Q_n}(\hat{\bar{x}}_n(t)-r_n(t))\right)\right.\\ -\left.\mathrm{sat}_{Q_{n+1}}(\hat{\bar{x}}_{n+1}(t))+r_{n+1}(t)\right],\tag{7} u(t)=b0(t)1[ρ(satQ1(xˉ^1(t)r1(t)),,satQn(xˉ^n(t)rn(t)))satQn+1(xˉ^n+1(t))+rn+1(t)],(7)
其中, x ˉ ^ n + 1 ( t ) \hat{\bar{x}}_{n+1}(t) xˉ^n+1(t)用于补偿总扰动 x ˉ n + 1 ( t ) \bar{x}_{n+1}(t) xˉn+1(t) ρ ( s a t Q 1 ( x ˉ ^ 1 ( t ) − r 1 ( t ) ) , … , s a t Q n ( x ˉ ^ n ( t ) − r n ( t ) ) ) + r n + 1 ( t ) \rho\left(\mathrm{sat}_{Q_1}(\hat{\bar{x}}_1(t)-r_1(t)),\ldots,\mathrm{sat}_{Q_n}(\hat{\bar{x}}_n(t)-r_n(t))\right)+r_{n+1}(t) ρ(satQ1(xˉ^1(t)r1(t)),,satQn(xˉ^n(t)rn(t)))+rn+1(t)用于输出跟踪,采用饱和函数 s a t Q i ( ⋅ ) \mathrm{sat}_{Q_i}(\cdot) satQi()是为了防止所谓的峰值现象,文献[3]对此有专门的论述。我们可以看到的是,ADRC中ESO和控制器的形式比较直接,其复杂性主要体现在稳定性证明上。这里有两类误差:ESO的观察误差 η ( t ) \eta(t) η(t)和系统对参考信号的跟踪误差 e ( t ) e(t) e(t)。首先给出两类误差的定义:
{ η i ( t ) = x ˉ i ( t ) − x ˉ ^ i ( t ) ε n + 1 − i    ( i = 1 , 2 , … , n + 1 ) , η ( t ) = ( η 1 ( t ) , … , η n + 1 ( t ) ) , e i ( t ) = x ˉ i ( t ) − r i ( t )    ( i = 1 , 2 , … , n ) , e ( t ) = ( e 1 ( t ) , … , e n ( t ) ) , Δ ( t ) = ρ ( s a t Q 1 ( x ˉ ^ 1 ( t ) − r 1 ( t ) ) , … , s a t Q n ( x ˉ ^ n ( t ) − r n ( t ) ) ) − ρ ( e ( t ) ) , (8) \left\{\begin{aligned} &\eta_i(t)=\frac{\bar{x}_i(t)-\hat{\bar{x}}_i(t)}{\varepsilon^{n+1-i}}\;(i=1,2,\ldots,n+1),\\ &\eta(t)=(\eta_1(t),\ldots,\eta_{n+1}(t)),\\ &e_i(t)=\bar{x}_i(t)-r_i(t)\;(i=1,2,\ldots,n),\\ &e(t)=(e_1(t),\ldots,e_n(t)),\\ &\varDelta(t)=\rho\left(\mathrm{sat}_{Q_1}(\hat{\bar{x}}_1(t)-r_1(t)),\ldots,\mathrm{sat}_{Q_n}(\hat{\bar{x}}_n(t)-r_n(t))\right)-\rho(e(t)),\end{aligned}\right.\tag{8} ηi(t)=εn+1ixˉi(t)xˉ^i(t)(i=1,2,,n+1),η(t)=(η1(t),,ηn+1(t)),ei(t)=xˉi(t)ri(t)(i=1,2,,n),e(t)=(e1(t),,en(t)),Δ(t)=ρ(satQ1(xˉ^1(t)r1(t)),,satQn(xˉ^n(t)rn(t)))ρ(e(t)),(8)
进而可以写出 η ( t ) \eta(t) η(t) e ( t ) e(t) e(t)满足的微分方程:
{ e ˙ 1 ( t ) = e 2 ( t ) , e ˙ 2 ( t ) = e 3 ( t ) , ⋮ e ˙ n ( t ) = ρ ( e ( t ) ) + Δ ( t ) + x ˉ n + 1 ( t ) − s a t Q n + 1 ( x ˉ ^ n + 1 ( t ) ) , η ˙ 1 ( t ) = 1 ε [ η 2 ( t ) − g 1 ( η 1 ( t ) ) ] , ⋮ η ˙ n ( t ) = 1 ε [ η n + 1 ( t ) − g n ( η 1 ( t ) ) ] , η ˙ n + 1 ( t ) = − 1 ε g n + 1 ( η 1 ( t ) ) + x ˉ ˙ n + 1 ( t ) . (9) \left\{\begin{aligned} &\dot{e}_1(t)=e_2(t),\\ &\dot{e}_2(t)=e_3(t),\\ &\vdots\\ &\dot{e}_n(t)=\rho(e(t))+\varDelta(t)+\bar{x}_{n+1}(t)-\mathrm{sat}_{Q_{n+1}}(\hat{\bar{x}}_{n+1}(t)),\\ &\dot{\eta}_1(t)=\frac{1}{\varepsilon}[\eta_2(t)-g_1(\eta_1(t))],\\ &\vdots\\ &\dot{\eta}_n(t)=\frac{1}{\varepsilon}[\eta_{n+1}(t)-g_n(\eta_1(t))],\\ &\dot{\eta}_{n+1}(t)=-\frac{1}{\varepsilon}g_{n+1}(\eta_1(t))+\dot{\bar{x}}_{n+1}(t).\end{aligned}\right.\tag{9} e˙1(t)=e2(t),e˙2(t)=e3(t),e˙n(t)=ρ(e(t))+Δ(t)+xˉn+1(t)satQn+1(xˉ^n+1(t)),η˙1(t)=ε1[η2(t)g1(η1(t))],η˙n(t)=ε1[ηn+1(t)gn(η1(t))],η˙n+1(t)=ε1gn+1(η1(t))+xˉ˙n+1(t).(9)
然后就可以根据式(9)开展ADRC稳定性分析了,证明一般分三步走:

第一步:证明跟踪误差 e ( t ) e(t) e(t)的有界性。具体来说,存在 ε 2 > 0 \varepsilon_2>0 ε2>0使得对所有 ε ∈ ( 0 , ε 2 ) \varepsilon\in(0,\varepsilon_2) ε(0,ε2),集合 { e ( t ) : t ∈ [ 0 , ∞ ) } \{e(t):t\in[0,\infty)\} {e(t):t[0,)}有界。通过研究时间区间 [ t 1 , t 2 ] [t_1,t_2] [t1,t2]上系统的性质,利用反证法证明,这里比较关键的有4个细节:

  1. 利用不等式放缩证明 ∣ e i ( t ) ∣ \vert e_i(t)\vert ei(t)的上界和 ε \varepsilon ε无关;
  2. x ˉ ˙ n + 1 ( t ) \dot{\bar{x}}_{n+1}(t) xˉ˙n+1(t)表达式的计算,没有实际难度,只是需要注意各项的展开,结合论文的各种假设获得 ∣ x ˉ ˙ n + 1 ( t ) ∣ \vert\dot{\bar{x}}_{n+1}(t)\vert xˉ˙n+1(t)上界的形式;
  3. 在反证法的前提下,计算观察误差 η ( t ) \eta(t) η(t)系统对应的Laypunov函数 V 2 ( η ( t ) ) V_2(\eta(t)) V2(η(t))对时间的导数,以表明观察误差 η ( t ) \eta(t) η(t)的界小于某一表达式,即观测误差足够小;
  4. 计算跟踪误差 e ( t ) e(t) e(t)系统对应的Laypunov函数 V 1 ( e ( t ) ) V_1(e(t)) V1(e(t))对时间的导数,以表明时间区间 [ t 1 , t 2 ] [t_1,t_2] [t1,t2] V 1 ( e ( t ) ) V_1(e(t)) V1(e(t))是随时间递减的,导出矛盾。

第二步:证明观测误差 η ( t ) \eta(t) η(t) ε → 0 \varepsilon\rightarrow 0 ε0而趋于0,也就是ESO的收敛性。其实第一步已经完成大部分推导工作了,因此第二步比较直接:

  1. 在第一步证明结论的基础上,改写 ∣ x ˉ ˙ n + 1 ( t ) ∣ \vert\dot{\bar{x}}_{n+1}(t)\vert xˉ˙n+1(t)上界的形式;
  2. 计算观察误差 η ( t ) \eta(t) η(t)系统对应的Laypunov函数 V 2 ( η ( t ) ) V_2(\eta(t)) V2(η(t))对时间的导数,然后对 ∥ η ( t ) ∥ \Vert\eta(t)\Vert η(t)的上界进行放缩,获得结论。

第三步:证明跟踪误差 e ( t ) e(t) e(t)的收敛性,也就是ADRC的稳定性。具体来说,对任意 σ > 0 \sigma>0 σ>0,存在 ε ∗ > 0 \varepsilon^*>0 ε>0使得对所有 ε ∈ ( 0 , ε ∗ ) \varepsilon\in(0,\varepsilon^*) ε(0,ε) ∥ e ( t ) ∥ ≤ σ \Vert e(t)\Vert\leq \sigma e(t)σ对所有 t ∈ [ t ε , ∞ ) t\in[t_\varepsilon,\infty) t[tε,)均成立, t ε t_\varepsilon tε为与 ε \varepsilon ε有关的常数。

这一步就比较直接了,结合第一步和第二步的结论,直接计算跟踪误差 e ( t ) e(t) e(t)系统对应的Laypunov函数 V 1 ( e ( t ) ) V_1(e(t)) V1(e(t))对时间的导数,得到最终的结论。

至此可以看到ADRC的稳定性分析思路,而不是被其表明复杂的公式唬住。这里想指出的是,ADRC的稳定性分析需要先把系统转换为积分形式,因此当结合具体的应用对象时需要小心,毕竟实际系统不太容易满足ADRC稳定性分析必要的假设条件。相比之下,结合具体的应用对象设计特定形式的ESO,再在控制器设计上做点小改动,然后稳定性分析中利用ESO的分析套路,反倒相对容易产生一篇自己的论文。

总的来说,这里的ADRC的稳定性分析仅具备理论意义(主要用来写论文),因为这里暗含了一个条件,即 ε \varepsilon ε可以任意小,但任何的实际系统都存在时延,而在考虑时延的前提下, ε \varepsilon ε是不能过小的。此外,这里并没有给出ADRC设计参数的指导准则,对于控制工程师来说没有参考价值(所以PID真香)。其实更有意义的是从频域角度分析ESO和ADRC,毕竟ADRC参数选择并不容易,这一方面的工作可以参考高志强老师的相关工作。此外,ADRC并不是万能的,比如当实际系统的扩张状态和系统状态相关时,问题就变复杂了,此时ESO的效果到底如何还真不好说。总之,一旦考虑工程实际,如何将ADRC利用好是个技术活。

参考文献

[1]Guo B Z, Zhao Z L. On convergence of the nonlinear active disturbance rejection control for MIMO systems[J]. SIAM Journal on Control and Optimization, 2013, 51(2): 1727-1757.

[2]Guo B Z, Wu Z H. Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance rejection control[J]. Systems & Control Letters, 2017, 100: 21-31.

[3]Khalil H K. Nonlinear systems[M]. Prentice-Hall, 2001.

  • 4
    点赞
  • 51
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: 自抗扰控制设计与理论分析是一种先进的控制方法,旨在提高系统的鲁棒性和抗干扰能力。该方法通过引入一个抗扰控制器来补偿系统中的外部扰动,并实现对系统状态的精确控制。 自抗扰控制的基本思想是基于系统的数学模型,在系统被外部扰动影响时,通过在线估计扰动信号并加以抵消,从而实现系统的稳定性和性能要求。通过引入扰动估计器,自抗扰控制可以将不确定性和扰动信号纳入考虑范围,有效降低了系统的灵敏度。 自抗扰控制设计和理论分析涉及到多个关键问题,包括扰动建模和估计、抗扰控制器设计、鲁棒性分析等。在扰动建模和估计方面,可以通过信号处理和系统辨识等方法,对扰动信号进行建模和估计。抗扰控制器的设计一般包括两个主要部分:估计器和补偿器,估计器用于估计扰动信号,补偿器用于产生补偿信号。鲁棒性分析涉及到确定系统的鲁棒性边界,即使系统参数存在不确定性时,系统性能仍能保持在可接受的范围内。 自抗扰控制设计与理论分析的优点是能够有效地抵消外部扰动对系统性能的影响,提高系统的鲁棒性和稳定性。该方法广泛应用于航空、航天、机械等领域,取得了显著的成果。 相比传统的PID控制方法,自抗扰控制设计与理论分析更加灵活和高效,能够应对更为复杂的系统和扰动条件。但同时,该方法的设计和分析也更加复杂,需要深入理解系统动力学和控制理论,以及具备较强的数学建模和计算能力。 总之,自抗扰控制设计与理论分析是一种基于扰动估计和补偿的先进控制方法,它能够提高系统的鲁棒性和抗扰控制能力。在实际应用中,需要综合考虑系统的特点和控制要求,并结合具体的实际问题进行调整和优化,以实现更好的控制效果。 ### 回答2: 自抗扰控制设计与理论分析pdf是一本关于自抗扰控制的设计和理论分析的电子书。自抗扰控制是一种用于系统控制的先进方法,它通过对系统的扰动进行实时监测和补偿,降低了外部干扰对系统性能的影响。 在这本电子书中,作者介绍了自抗扰控制的基本原理和应用。首先,书中详细介绍了自抗扰控制的基本概念和背景知识,包括系统建模、反馈控制和扰动抑制等内容。然后,作者详细讨论了自抗扰控制的设计方法和理论分析技术,包括基于状态观测器自抗扰控制设计、基于滑模控制的自抗扰控制设计以及基于模糊控制的自抗扰控制设计等。 此外,这本电子书还介绍了自抗扰控制在工业控制中的应用案例。作者通过实例分析,展示了自抗扰控制在电力系统、机械系统和化工系统等领域的应用效果,并探讨了控制方法的优缺点。 总的来说,这本电子书系统地介绍了自抗扰控制的设计和理论分析方法,对于从事系统控制研究和工程应用的人员具有很大的参考价值。无论是对于想要深入了解自抗扰控制的基本原理和方法,还是想要在实际应用中应用自抗扰控制的人员来说,这本电子书都是一本很有价值的资源。 ### 回答3: 自抗扰控制是一种针对复杂系统的控制方法,旨在通过抵消外部干扰以及系统内部不确定性带来的影响,实现系统的稳定性和鲁棒性。 自抗扰控制设计与理论分析pdf是介绍自抗扰控制设计原理和理论分析的一本电子书籍。该电子书籍主要包括以下内容: 1. 自抗扰控制的基本概念和原理:介绍了自抗扰控制的基本思想和控制框架,以及自抗扰控制与传统控制方法的区别。 2. 自抗扰控制的设计方法:介绍了自抗扰控制设计的一般步骤和方法,包括系统建模、系统辨识、控制器设计等。 3. 自抗扰控制的理论分析:介绍了自抗扰控制设计的理论分析方法,包括稳定性分析、鲁棒性分析等。 4. 自抗扰控制在实际系统中的应用:介绍了自抗扰控制在各个领域中的应用实例,包括机械系统、电气系统、化工系统等。 该电子书籍通过详细的理论分析和实际应用案例,旨在帮助读者深入理解自抗扰控制的设计原理和方法,以及掌握自抗扰控制的理论分析技巧。对于从事自动控制领域的研究人员和工程师来说,该电子书籍是一本很有参考价值的资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值