FinMaster:首个模拟多步骤金融操作的大模型金融测评基准

FinMaster: A Holistic Benchmark for Mastering Full-Pipeline FinancialWorkflows with LLMs

金融是全球经济系统的基石,金融任务在资本配置、风险管理和投资决策中至关重要,但面临诸多挑战,如劳动密集、低容错率、数据碎片化和技术工具局限性。现有的金融基准(如FinQA、FinBen等)在复杂金融推理和实际应用场景中存在局限,未能充分反映金融市场的动态性。

本文提出FinMaster,一个全面的金融基准,系统评估LLMs在金融素养、会计、审计和咨询方面的能力。FinMaster包含三个模块:FinSim(生成金融数据的模拟器)、FinSuite(涵盖多种金融任务的任务套件)和FinEval(统一评估框架)。FinMaster是首个模拟多步骤金融操作的基准,为先进LLMs提供测试平台。

img

摘要

金融任务对全球经济稳定至关重要,但面临劳动密集、低容错率、数据碎片化和技术工具局限等挑战。大型语言模型(LLMs)在自然语言处理上表现出色,但在金融领域的评估基准存在领域数据不足、任务设计简单和评估框架不完整的问题。

本文提出FinMaster,一个全面的金融基准,系统评估LLMs在金融素养、会计、审计和咨询方面的能力。

  • FinSim: 生成合成、隐私合规的金融数据集,模拟真实市场动态。
  • FinSuite: 提供183个不同类型和难度的核心金融任务。
  • FinEval: 开发统一界面以简化评估。

img

实验显示,当前LLMs在金融推理方面存在显著能力差距,复杂场景的准确率从90%降至40%。FinMaster是首个全面覆盖金融工作流程的基准,旨在促进LLMs在实际金融实践中的应用,提高效率和准确性。

简介

金融是全球经济系统的基石,金融任务在资本配置、风险管理和投资决策中至关重要,但面临诸多挑战,如劳动密集、低容错率、数据碎片化和技术工具局限性。大型语言模型(LLMs)如GPT-4和DeepSeek-v3在推理和多步骤问题解决方面表现出色,适合自动化金融工作流程,减少人力和错误。现有的金融基准(如FinQA、FinBen等)在复杂金融推理和实际应用场景中存在局限,未能充分反映金融市场的动态性。

img

FinMaster是一个全面的基准,包含三个模块:FinSim(生成金融数据的模拟器)、FinSuite(涵盖多种金融任务的任务套件)和FinEval(统一评估框架)。实验表明,尽管现有LLMs在基础任务上表现良好,但在复杂多步骤推理场景中的表现显著下降,且缺乏领域特定知识,可能导致错误结论。FinMaster是首个模拟多步骤金融操作的基准,为先进LLMs提供测试平台。

预备知识

大型语言模型。 大型语言模型(LLMs)是自回归模型,通过无监督学习从文本数据中学习,建模可变长度的令牌序列的联合概率。

LLMs通过条件概率的乘积进行因式分解,能够在多种自然语言处理任务中进行有效的泛化,无需特定任务的微调。

交易和财务报表。 交易是指导致公司财务状况变化的经济事件,系统记录以生成准确的财务报表。三大财务报表:收入报表(反映收入、费用和利润)、资产负债表(特定时点的财务状况)、现金流量表(现金流入和流出)。财务报表相互关联,净收入流入留存收益,资产负债表的变化影响现金流量表。财务报表的编制遵循IFRS和GAAP等标准,以确保一致性和透明度,反映公司绩效和财务稳定性。

财务工作流程。 会计是系统记录、分析和报告财务交易,确保透明度、合规性和决策支持,促进业务可持续性。日常操作记录、分类和调整,遵循会计原则,为财务报表奠定基础。审计是独立的保证活动,验证公司经济活动的合规性和财务信息的可靠性,确保数据的准确性和完整性。咨询提供专家分析以改善业务绩效,通过财务诊断(如杜邦分析和阿尔特曼Z-score)识别低效和竞争定位,连接财务数据与战略决策。

FinMaster

FinSim:金融数据模拟器

FinSim是一个金融数据模拟器,模拟不同类型公司的日常财务活动,生成交易记录和财务报表。

img

公司类型:

  • Type I:资本密集型制造商,低销售频率,高价值产品。
  • Type II:交易驱动型公司,稳定成本,低定价能力,依赖批量销售。
  • Type III:高附加值消费品生产商,高利润,低生产成本,重品牌投资。
  • Type IV:轻资产公司,低固定资产,高利润,通过信用采购。
  • Type V:高周转公司,频繁低价销售,大量客户基础。

交易类型:

  • 资产数据:现金存款、银行存款、固定资产初始化。
  • 运营数据:采购管理、销售管理、固定资产管理(购买和折旧)。
  • 财务数据:现金流管理、费用处理、利息应收账款记录。

生成过程。 FinSim模拟器通过多阶段流程生成交易和财务报表。初始化阶段配置特定公司模型。业务模拟阶段管理资产、采购和销售,生成资产、运营和财务数据。交易从财务记录中派生,包括正确和错误的交易以模拟现实中的审计错误。

img

财务报表生成:

  • 收入表通过汇总收入和支出交易生成。
  • 资产负债表结合资产数据与负债和股本信息。
  • 现金流量表分类现金相关交易为经营、投资和融资活动。

FinSuite:财务任务套件

FinSuite:财务任务套件FinSuite提供183个金融任务,包括64个金融素养、49个会计、35个审计和35个咨询任务,任务间的相互依赖性对LLM性能评估至关重要。

img

任务配置采用三维度指标系统⟨α, β, γ⟩:α为计算基础基数,β为跨源整合水平,γ为输出维度广度,适用于会计、审计和咨询任务。

金融素养任务评估LLM的基本金融知识,使用模拟生成的财务报告,通过定义匹配查询方法进行。

会计任务聚焦于财务报表生成,采用两级框架将交易记录转化为标准化财务报表,评估LLM在数据整合和会计标准应用中的能力。

审计任务通过生成真实发票格式的交易数据,嵌入错误样本,评估LLM在识别审计错误和理解财务文本信息方面的表现。

咨询任务。FinSuite通过18个关键财务指标构建诊断矩阵,涵盖盈利能力、运营效率、流动性、偿债能力和现金流质量五个维度。该框架通过单一或组合指标的计算,系统评估LLMs在财务指标公式理解、数据提取可追溯性和计算稳健性方面的准确性。

FinEval:LLM评估

本文介绍了一个统一接口和设计的提示模板,以便于评估。

提示模板包括:任务描述、示例、待解决问题和指令,旨在确保跨模块(会计、审计、咨询)的任务一致性。

FinEval开发了一个统一接口,用于API基础的LLM完成,支持性能基准测试和生成的一致性。

FinEval的关键功能包括:动态生成任务特定提示、利用LiteLLM进行统一LLM执行、使用正则表达式解析JSON格式响应。

结果

金融素养分析

LLMs在基本金融知识测试中表现优异,平均准确率为96%。GPT-4.1、DeepSeek-V3、o3mini和Claude-3.7-Sonnet几乎达到100%准确率。GPT-4.1-nano和GPT4o-mini表现较差,准确率在40-60%之间,尤其在多输出和多步推理任务中困难。

img

img

性能分析

FinMaster在会计、审计和咨询任务中表现出明显的性能差异,会计任务最具挑战性,模型在基本任务上准确率为40-60%,但在复杂场景下准确率骤降至20%以下,生成报表任务仅为3%。

img

审计任务中,DeepSeek-V3和Claude-3.7在多重错误检测上表现较好,但在单一错误场景中准确率下降,表明模型依赖于可检测的错误模式。

咨询任务的复杂性显著影响模型表现,o3-mini在分析跨财务报表的计算时准确率下降35%,而DeepSeek-V3和Claude-3.7的表现不稳定,GPT-4.1在大多数情况下保持55-65%的稳定表现,GPT-4.1-nano在跨报表分析中表现良好,达到42%。

img

Tokens分析

不同模型在金融任务中的token使用量差异显著,通常随着任务复杂度增加而增加。

img

o3-mini在会计任务中使用最多可达16,000个token,而DeepSeek-V3仅为2,000个。尽管token使用量增加,性能提升并不一定明显;例如,o3-mini在审计任务中以较低token使用量达到85%准确率,超越Claude-3.7-Sonnet和DeepSeek-V3的70%和69%。

模型效率、推理质量和信息利用效果比单纯的token数量更能驱动性能提升。过多的token消耗可能反映冗余计算、无效推理或处理上下文信息的低效,而非更深层的分析能力。

img

消融分析

FinSim设计了五种不同类型的公司,研究组织设置对模型性能的影响。高准确率模型(如Claude-3.7-Sonnet和DeepSeek-V3)表现稳定,低准确率模型(如GPT-4.1-mini和o3-mini)表现波动较大。公司特定操作增加了模型的性能变异性,尤其是对较弱模型的影响更显著。

img

img

FinMaster设计的任务反映一般商业场景,与行业无关。短周期(200交易)与长周期(400交易)比较中,咨询任务表现稳定,而交易处理任务表现下降。LLMs在不同周期和任务中的误差条没有显著差异,表明不确定性源于大型语言模型的固有随机性。

img

img

推理失败案例分析

o3-mini模型在财务知识上存在缺陷,错误将利息应收款归类为主营业务收入,导致计算错误。关键数据缺失,例如“银行到现金转移”的遗漏,影响现金最终值的计算。浮点误差导致计算偏差,如ROA计算中小数精度问题,正确值-9.56%被错误四舍五入为-9.55%。推理一致性错误,模型在逻辑流中出现明显偏差,导致计算结果不一致。

img

当前FinMaster任务仅限于文本输入,缺乏多模态数据处理能力,限制了财务分析的现实性。通用LLM在上下文窗口大小和专业财务知识方面存在限制,增加了不准确性,妨碍全面财务推理。

总结

FinMaster是一个针对金融领域的LLM基准,评估会计、审计和咨询任务的能力。包含三个核心模块:

  • FinSim:生成合成金融数据,模拟市场动态,解决数据稀缺和隐私问题。
  • FinSuite:涵盖183个任务,评估金融素养、会计、审计和咨询能力。
  • FinEval:统一评估框架,提供系统化模型评估。

尽管先进LLM在基础金融素养任务上准确率高达96%,但在复杂任务中表现下降至40%,显示出计算错误传播对准确性的影响。

FinMaster是首个专门评估LLM在真实金融工作流中推理能力的基准,为未来研究提供基础测试平台。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值