/**
选择排序算法
原理:工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,
然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
复杂度分析:选择排序的交换操作介于和次之间。选择排序的比较操作为次之间。选择排序的赋值操作介于和次之间。
比较次数O(n^2),比较次数与关键字的初始状态无关,总的比较次数N=(n-1)+(n-2)+...+1=n*(n-1)/2。
交换次数O(n),最好情况是,已经有序,交换0次;最坏情况是,逆序,交换n-1次。
交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CPU时间多,n值较小时,选择排序比冒泡排序快。
@param arr待排序数组
*/
public static void sortSelect( int [] arr )
{
for (int i=0; i<arr.length-1; i++ )
{
for(int j=i+1; j<arr.length; j++)
{
if(arr[j] < arr[i])
{
arr[j] = arr[i]^arr[j];
arr[i] = arr[i]^arr[j];
arr[j] = arr[i]^arr[j];
}
}
}
}
/**
完成冒泡排序
原理:
比较相邻的元素。如果第一个比第二个大,就交换他们两个。
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
由于它的简洁,冒泡排序通常被用来对于程式设计入门的学生介绍算法的概念。
复杂度分析:冒泡排序对个项目需要O()的比较次数,且可以原地排序。尽管这个算法是最简单了解和实作的排序算法之一,
但它对于少数元素之外的数列排序是很没有效率的。
冒泡排序是与插入排序拥有相等的执行时间,但是两种法在需要的交换次数却很大地不同。在最坏的情况,冒泡排序需要次交换,
而插入排序只要最多交换。冒泡排序的实现(类似下面)通常会对已经排序好的数列拙劣地执行(),而插入排序在这个例子只需要个运算。
@param arr待排序数组
*/
public static void bubbleSort(int [] arr)
{
for (int i=0; i<arr.length-1;i++)
{
for (int j=0;j<arr.length-i-1;j++)
{
if(arr[j+1] > arr[j])
{
arr[j+1] = arr[j+1]^arr[j];
arr[j] = arr[j+1]^arr[j];
arr[j+1] = arr[j+1]^arr[j];
}
}
}
}
/**
完成插入排序
原理:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
步骤:
从第一个元素开始,该元素可以认为已经被排序
取出下一个元素,在已经排序的元素序列中从后向前扫描
如果该元素(已排序)大于新元素,将该元素移到下一位置
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
将新元素插入到该位置后
重复步骤2~5
复杂度分析:
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,
需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
*/
public static void insertSort(int arr[])
{
for (int i=1;i<arr.length;i++ )
{
int key = arr[i];
int position = i;
while (position > 0 && arr[position-1]>key)
{
arr[position] = arr[position-1];
position --;
}
arr[position] = key;
}
}
/**
完成快速排序
原理:快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
步骤为:
从数列中挑出一个元素,称为 "基准"(pivot),
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。
在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,
但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
复杂分析:在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,
但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,
因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
*/
public static void quickSort(int [] arr,int low, int high)
{
int pivot;
if (low < high)
{
pivot = getCurrent(arr,low,high);
quickSort(arr,low,pivot-1);
quickSort(arr,pivot+1,high);
}
}
/**
快排的划分
做法
第一步:(初始化)设置两个指针i和j,它们的初值分别为区间的下界和上界,即i=low,i=high;
选取无序区的第一个记录R[i](即R[low])作为基准记录,并将它保存在变量pivot中;
第二步:令j自high起向左扫描,直到找到第1个关键字小于pivot.key的记录R[j],
将R[j])移至i所指的位置上,这相当于R[j]和基准R[i](即pivot)进行了交换,
使关键字小于基准关键字pivot.key的记录移到了基准的左边,交换后R[j]中相当于是pivot;
然后,令i指针自i+1位置开始向右扫描,直至找到第1个关键字大于pivot.key的记录R[i],
将R[i]移到i所指的位置上,这相当于交换了R[i]和基准R[j],使关键字大于基准关键字的记录移到了基准的右边,
交换后R[i]中又相当于存放了pivot;接着令指针j自位置j-1开始向左扫描,如此交替改变扫描方向,
从两端各自往中间靠拢,直至i=j时,i便是基准pivot最终的位置,将pivot放在此位置上就完成了一次划分。
*/
public static int getCurrent(int [] arr, int low, int high)
{
int pivot = arr[low];
while (low < high )
{
while (low<high && arr[high] >= pivot)
{
high--;
}
if (low < high)
{
arr[low++] = arr[high];
}
while (low < high && arr[low] <= pivot)
{
low ++;
}
if (low < high)
{
arr[high--] = arr[low];
}
}
//arr[low] = pivot;
arr[high] = pivot;
return low;
}
// 冒泡排序法
public void Sort(int[] list)
{
long begintime = System.DateTime.Now.Second * 1000 + System.DateTime.Now.Millisecond;
Console.WriteLine(begintime);
int j, temp;
j = 1;
while ((j < list.Length))
{
for (int i = 0; i < list.Length - j; i++)
{
if (list[i] < list[i + 1])
{
temp = list[i];
list[i] = list[i + 1];
list[i + 1] = temp;
}
}
j++;
}
long endtime = System.DateTime.Now.Second * 1000 + System.DateTime.Now.Millisecond;
Console.WriteLine(endtime);
Console.WriteLine(endtime - begintime);
}
// 选择排序法
public void SortChoice(int[] list)
{
long begintime = System.DateTime.Now.Millisecond;
int min;
for (int i = 0; i < list.Length - 1; i++)
{
min = i;
for (int j = i + 1; j < list.Length; j++)
{
if (list[j] < list[min])
min = j;
}
int t = list[min];
list[min] = list[i];
list[i] = t;
}
long endtime = System.DateTime.Now.Millisecond;
Console.WriteLine(begintime);
Console.WriteLine(endtime);
Console.WriteLine(endtime - begintime);
}
// 插入排序法
public void SortInsert(int[] list)
{
for (int i = 1; i < list.Length; i++)
{
int t = list[i];
int j = i;
while ((j > 0) && (list[j - 1] < t))
{
list[j] = list[j - 1];
--j;
}
list[j] = t;
}
}
// 希尔排序法
public void SortShell(int[] list)
{
int inc;
for (inc = 1; inc <= list.Length / 9; inc = 3 * inc + 1) ;
for (; inc > 0; inc /= 3)
{
for (int i = inc + 1; i <= list.Length; i += inc)
{
int t = list[i - 1];
int j = i;
while ((j > inc) && (list[j - inc - 1] > t))
{
list[j - 1] = list[j - inc - 1];
j -= inc;
}
list[j - 1] = t;
}
}
}