排序算法

	/**
        选择排序算法
        原理:工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,
                  然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
              以此类推,直到所有元素均排序完毕。
        复杂度分析:选择排序的交换操作介于和次之间。选择排序的比较操作为次之间。选择排序的赋值操作介于和次之间。
                    比较次数O(n^2),比较次数与关键字的初始状态无关,总的比较次数N=(n-1)+(n-2)+...+1=n*(n-1)/2。
                                交换次数O(n),最好情况是,已经有序,交换0次;最坏情况是,逆序,交换n-1次。 
                                交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CPU时间多,n值较小时,选择排序比冒泡排序快。
        @param arr待排序数组
        */
        public static void sortSelect( int [] arr )
        {
                for (int i=0; i<arr.length-1; i++ )
                {
                        for(int j=i+1; j<arr.length; j++)
                        {
                                if(arr[j] < arr[i])
                                {
                                        arr[j] = arr[i]^arr[j];
                                        arr[i] = arr[i]^arr[j];
                                        arr[j] = arr[i]^arr[j];
                                }
                        }
                }
        }

        /**
        完成冒泡排序
        原理:
                比较相邻的元素。如果第一个比第二个大,就交换他们两个。
                对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
                针对所有的元素重复以上的步骤,除了最后一个。
                持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
                由于它的简洁,冒泡排序通常被用来对于程式设计入门的学生介绍算法的概念。
        复杂度分析:冒泡排序对个项目需要O()的比较次数,且可以原地排序。尽管这个算法是最简单了解和实作的排序算法之一,
                                但它对于少数元素之外的数列排序是很没有效率的。
                                冒泡排序是与插入排序拥有相等的执行时间,但是两种法在需要的交换次数却很大地不同。在最坏的情况,冒泡排序需要次交换,
                                而插入排序只要最多交换。冒泡排序的实现(类似下面)通常会对已经排序好的数列拙劣地执行(),而插入排序在这个例子只需要个运算。
        @param arr待排序数组
        */
        public static void bubbleSort(int [] arr)
        {
                for (int i=0; i<arr.length-1;i++)
                {
                        for (int j=0;j<arr.length-i-1;j++)
                        {
                                if(arr[j+1] > arr[j])
                                {
                                        arr[j+1] = arr[j+1]^arr[j];
                                        arr[j] = arr[j+1]^arr[j];
                                        arr[j+1] = arr[j+1]^arr[j];
                                }
                        }
                }
        }
        
        /**
        完成插入排序
        原理:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
        步骤:
                从第一个元素开始,该元素可以认为已经被排序
                取出下一个元素,在已经排序的元素序列中从后向前扫描
                如果该元素(已排序)大于新元素,将该元素移到下一位置
                重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
                将新元素插入到该位置后
                重复步骤2~5
        复杂度分析:
                                插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,
                                需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
        */
        public static void insertSort(int arr[])
        {
                for (int i=1;i<arr.length;i++ )
                {
                        int key = arr[i];
                        int position = i;

                        while (position > 0 && arr[position-1]>key)
                        {
                                arr[position] = arr[position-1];
                                position --;
                        }
                        arr[position] = key;
                }
        }
        
        /**
        完成快速排序
        原理:快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
        步骤为:
                从数列中挑出一个元素,称为 "基准"(pivot),
                重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。
                在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
                递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
                递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,
                但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
        复杂分析:在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,
                          但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,
                           因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
        */
        public static void quickSort(int [] arr,int low, int high)
        {        
                int pivot;
                if (low < high)
                {
                        pivot = getCurrent(arr,low,high);
                        quickSort(arr,low,pivot-1);
                        quickSort(arr,pivot+1,high);
                }
        }
        
        /**
        快排的划分
        做法
  第一步:(初始化)设置两个指针i和j,它们的初值分别为区间的下界和上界,即i=low,i=high;
                        选取无序区的第一个记录R[i](即R[low])作为基准记录,并将它保存在变量pivot中;
  第二步:令j自high起向左扫描,直到找到第1个关键字小于pivot.key的记录R[j],
                        将R[j])移至i所指的位置上,这相当于R[j]和基准R[i](即pivot)进行了交换,
                        使关键字小于基准关键字pivot.key的记录移到了基准的左边,交换后R[j]中相当于是pivot;
                        然后,令i指针自i+1位置开始向右扫描,直至找到第1个关键字大于pivot.key的记录R[i],
                        将R[i]移到i所指的位置上,这相当于交换了R[i]和基准R[j],使关键字大于基准关键字的记录移到了基准的右边,
                        交换后R[i]中又相当于存放了pivot;接着令指针j自位置j-1开始向左扫描,如此交替改变扫描方向,
                        从两端各自往中间靠拢,直至i=j时,i便是基准pivot最终的位置,将pivot放在此位置上就完成了一次划分。
        */
        public static int getCurrent(int [] arr, int low, int high)
        {
                int pivot = arr[low];
                while (low < high )
                {
                        while (low<high && arr[high] >= pivot)
                        {
                                high--;
                        }
                        if (low < high)
                        {
                                arr[low++] = arr[high];
                        }
                        while (low < high && arr[low] <= pivot)
                        {
                                low ++;
                        }
                        if (low < high)
                        {
                                arr[high--] = arr[low];
                        }
                }
                //arr[low] = pivot;
                arr[high] = pivot;
                return low;
        }

	// 冒泡排序法
        public void Sort(int[] list)
        {
            long begintime = System.DateTime.Now.Second * 1000 + System.DateTime.Now.Millisecond;
            Console.WriteLine(begintime);
            int j, temp;
            j = 1;
            while ((j < list.Length))
            {
                for (int i = 0; i < list.Length - j; i++)
                {
                    if (list[i] < list[i + 1])
                    {
                        temp = list[i];
                        list[i] = list[i + 1];
                        list[i + 1] = temp;
                    }
                }
                j++;
            }
            long endtime = System.DateTime.Now.Second * 1000 + System.DateTime.Now.Millisecond;
            Console.WriteLine(endtime);
            Console.WriteLine(endtime - begintime);
        }

        // 选择排序法
        public void SortChoice(int[] list)
        {
            long begintime = System.DateTime.Now.Millisecond;
            int min;
            for (int i = 0; i < list.Length - 1; i++)
            {
                min = i;
                for (int j = i + 1; j < list.Length; j++)
                {
                    if (list[j] < list[min])
                        min = j;
                }
                int t = list[min];
                list[min] = list[i];
                list[i] = t;
            }
            long endtime = System.DateTime.Now.Millisecond;
            Console.WriteLine(begintime);
            Console.WriteLine(endtime);
            Console.WriteLine(endtime - begintime);
        }


        // 插入排序法
        public void SortInsert(int[] list)
        {
            for (int i = 1; i < list.Length; i++)
            {
                int t = list[i];
                int j = i;
                while ((j > 0) && (list[j - 1] < t))
                {
                    list[j] = list[j - 1];
                    --j;
                }
                list[j] = t;
            }
        }


        // 希尔排序法
        public void SortShell(int[] list)
        {
            int inc;
            for (inc = 1; inc <= list.Length / 9; inc = 3 * inc + 1) ;
            for (; inc > 0; inc /= 3)
            {
                for (int i = inc + 1; i <= list.Length; i += inc)
                {
                    int t = list[i - 1];
                    int j = i;
                    while ((j > inc) && (list[j - inc - 1] > t))
                    {
                        list[j - 1] = list[j - inc - 1];
                        j -= inc;
                    }
                    list[j - 1] = t;
                }
            }
        }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值