【PyTorch 实战1:ResNet 分类模型】10min揭秘 ResNet如何轻松训练超深层网络以及pytorch代码实现

ResNet 简介和原理

1. 什么是 ResNet?

ResNet的目标是解决训练深层神经网络时出现的梯度消失问题。在深层网络中,梯度消失会导致难以训练。ResNet通过引入跳跃连接快捷连接来有效地解决这个问题。由何凯明等人于2015年提出。这篇论文的正式标题是 《Deep Residual Learning for Image Recognition》

  • 问题背景:深度神经网络的训练变得越来越困难,尤其是当网络层数增加时。
  • 解决方案:ResNet引入了跳跃连接,允许网络层之间的直接连接,从而有效地解决了梯度消失问题。
  • 核心思想:学习残差(即输入与输出之间的差异),使网络更易于训练。
  • 层的重新定义:将网络层显式地重新定义为学习残差函数,而不是学习无参考的函数。
  • 优点:ResNet网络更易于优化,可以通过增加深度获得更高的准确性。

2. 梯度消失问题

考虑一个网络层H(x)由两个子层组成:layer1和layer2。如果H(x)相对于x的偏导数的幅度远小于1,由于激活函数(如Sigmoid)的存在,从H(x)的梯度传播到x的梯度会非常小,这就是梯度消失问题

3. ResNet 架构

ResNet有多个变体,包括ResNet18、ResNet34、ResNet50、ResNet101和ResNet152。每个变体都有不同的残差块结构和不同数量的残差块。

ResNet引入了跳跃连接,如下图所示:

resnet

通过从x到H(x)添加跳跃连接,网络学习残差F(x) = H(x) - x,这样更容易。有了这个跳跃连接,x的梯度可以轻松地从H(x)的梯度传播过来,有效地解决了梯度消失问题。

公式说明

ResNet的核心思想是学习残差,即F(x) = H(x) - x。这可以用公式表示为:

[ H(x) = F(x) + x ]

实验结果

  • 在ImageNet数据集上,ResNet网络的深度可达152层,比VGG网络深8倍,但复杂度较低。
  • 在ImageNet测试集上,ResNet集成模型的错误率为3.57%,在ILSVRC 2015分类任务中获得第一名。
  • 在CIFAR-10数据集上,ResNet在100和1000层上进行了分析。
  • 在COCO目标检测数据集上,由于极深的表示,ResNet相对于其他方法获得了28%的改进。

ResNet 代码实现(基于pytorch,分类问题)

环境安装

以下是在全新环境中配置Conda虚拟环境的步骤,确保已经安装了CondaPython

  1. 安装 Miniconda

    • 首先,请确保已经安装 Miniconda。可以从Miniconda 官网下载适合您操作系统的版本。(anaconda也可)
    • 安装完成后,在命令行中输入 conda -V 来验证是否成功安装了 Miniconda
  2. 创建虚拟环境

    • 打开命令行或终端,输入以下命令来创建一个名为 my_env 的虚拟环境(可以自行更改环境名称,如resnet):
      conda create -n my_env python=3.8
      
    • 这将创建一个基于 Python 3.8 的虚拟环境。
  3. 激活虚拟环境

    • 输入以下命令来激活刚刚创建的虚拟环境:
      conda activate my_env
      
    • 现在您已经在 my_env 环境中了。
  4. 安装所需的软件包

    • 在激活的虚拟环境中,您可以使用以下命令安装所需的软件包,例如 PyTorchTorchVision
      conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch
      
    • 这将安装 PyTorch 和相关依赖。
  5. 编写代码

    • 下面已经提供

到这里就完成了虚拟环境的安装,可以开始编写和运行下面的代码了!

  1. 运行代码
    • 在虚拟环境中运行您的代码:
      python resnet.py
      

代码实现

下面是基于ResNet-50的分类任务代码示例,我们将使用PyTorchTorchVision库。
将下面代码copy到编辑器中,新建文件名字为“resnet.py”

import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader

# 设置设备(GPU 或 CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载预训练的 ResNet-50 模型
resnet50 = models.resnet50(pretrained=True)
resnet50.to(device)
resnet50.eval()

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 加载 CIFAR-10 数据集
dataset = CIFAR10(root="./data", train=False, transform=transform, download=True)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)

# 分类任务
with torch.no_grad():
    for images, labels in dataloader:
        images = images.to(device)
        outputs = resnet50(images)
        _, predicted = torch.max(outputs, 1)
        print(f"Predicted class: {predicted.item()}")

# resnet50=====cifar10=====分类问题======

这段代码会加载预训练的 ResNet-50 模型,并在 CIFAR-10 数据集上进行分类预测。可以根据自己的需求修改数据集和其他参数。

  • 33
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
以下是一个使用PyTorch实现ResNet-18的代码示例: ```python import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(): return ResNet(BasicBlock, [2,2,2,2]) ``` 这个代码实现了一个简单的ResNet-18模型,其中包含了两个主要的部分: - BasicBlock:ResNet的基本模块,由两个卷积层和一个shortcut连接组成,用于构建ResNet的各个层。 - ResNetResNet模型的主要实现,由多个BasicBlock组成。在这个例子中,模型包含4个layer,每个layer包含了多个BasicBlock。 在构建ResNet模型时,需要指定每个layer中包含的BasicBlock数量。在这个例子中,我们使用了经典的ResNet-18结构,每个layer中包含2个BasicBlock。 最后,我们还提供了一个辅助函数ResNet18(),用于构建一个ResNet-18模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值