CBAM:一种增强卷积神经网络性能的双重注意力机制,进一步提高CNN性能【原理讲解及代码!!!】

文章介绍了CBAM(ConvolutionalBlockAttentionModule),一种通过结合通道和空间注意力的注意力模块,优化卷积神经网络特征提取。CBAM通过自适应特征重标定和双重注意力机制提高模型性能,适用于多种视觉任务且计算效率较高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CBAM:强化卷积神经网络性能的注意力模块

在深度学习领域,注意力机制已经成为提升模型性能的关键技术之一。最近,一种名为CBAM(Convolutional Block Attention Module)的注意力模块在卷积神经网络中引起了广泛关注。CBAM通过结合通道注意力和空间注意力,为模型提供了更加全面和有效的特征提取能力。本文将详细介绍CBAM的工作原理、独特优势以及在实际应用中的代码实现。

一、CBAM工作原理

CBAM模块的核心思想是对输入特征图进行两阶段的精炼:首先通过通道注意力模块关注于“哪些通道是重要的”,然后通过空间注意力模块关注于“在哪里”是一个有信息的部分。这种双重注意力机制使CBAM能够全面捕获特征中的关键信息。
在这里插入图片描述

1. 通道注意力模块

通道注意力模块的输出 M c ( F ) M_c(F) Mc(F) 可以通过以下公式计算:

M c ( F ) = σ ( M L P ( A v g P o o l ( F ) ) + M L P ( M a x P o o l ( F ) ) ) M_c(F) = \sigma(MLP(AvgPool(F)) + MLP(MaxPool(F))) Mc(F)=σ(MLP(AvgPool(F))+MLP(MaxPool(F)))

其中, F F F 是输入特征图, A v g P o o l AvgPool AvgPool M a x P o o l MaxPool MaxPool 分别表示全局平均池化和最大池化操作, M L P MLP MLP 表示多层感知机, σ \sigma σ 表示 Sigmoid 激活函数。

在这里插入图片描述

2. 空间注意力模块

空间注意力模块的输出 M s ( F ) M_s(F) Ms(F) 可以通过以下公式计算:

M s ( F ) = σ ( f 7 × 7 ( [ A v g P o o l ( F ) ; M a x P o o l ( F ) ] ) ) M_s(F) = \sigma(f^{7 \times 7}([AvgPool(F); MaxPool(F)])) Ms(F)=σ(f7×7([AvgPool(F);MaxPool(F)]))

其中, f 7 × 7 f^{7 \times 7} f7×7 表示一个 7 × 7 7 \times 7 7×7 的卷积操作, [ A v g P o o l ( F ) ; M a x P o o l ( F ) ] [AvgPool(F); MaxPool(F)] [AvgPool(F);MaxPool(F)] 表示将平均池化和最大池化结果沿通道轴拼接起来。

在这里插入图片描述

二、CBAM独特优势

    1. 双重注意力机制

CBAM通过结合通道注意力和空间注意力,实现了对输入特征的双重精炼。这种设计使模型能够同时关注哪些通道和哪些空间位置是有意义的,从而提高了模型的表征能力和决策准确性。

    1. 自适应特征重标定

CBAM能够根据任务需求和内容上下文动态地调整特征图中每个通道和空间位置的重要性。这种自适应重标定机制有助于模型更好地关注于关键特征,提高识别性能。

    1. 灵活性和通用性

CBAM模块设计简洁,易于集成到各种现有的CNN架构中。这使得CBAM成为一种通用的插件,可以广泛应用于图像分类、目标检测、语义分割等多种视觉识别任务。

    1. 计算效率高

尽管CBAM为模型引入了额外的计算量,但其设计考虑了计算效率。通过全局池化和简单的卷积操作,CBAM能够在保持较低额外计算成本的同时带来性能提升。

三、CBAM代码实现

下面是一个简单的PyTorch代码示例,展示了如何将CBAM模块集成到卷积神经网络中:

import torch
from torch import nn


# 通道注意力模块
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)  # 自适应平均池化
        self.max_pool = nn.AdaptiveMaxPool2d(1)  # 自适应最大池化

        # 两个卷积层用于从池化后的特征中学习注意力权重
        self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)  # 第一个卷积层,降维
        self.relu1 = nn.ReLU()  # ReLU激活函数
        self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)  # 第二个卷积层,升维
        self.sigmoid = nn.Sigmoid()  # Sigmoid函数生成最终的注意力权重

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))  # 对平均池化的特征进行处理
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))  # 对最大池化的特征进行处理
        out = avg_out + max_out  # 将两种池化的特征加权和作为输出
        return self.sigmoid(out)  # 使用sigmoid激活函数计算注意力权重


# 空间注意力模块
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'  # 核心大小只能是3或7
        padding = 3 if kernel_size == 7 else 1  # 根据核心大小设置填充

        # 卷积层用于从连接的平均池化和最大池化特征图中学习空间注意力权重
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()  # Sigmoid函数生成最终的注意力权重

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)  # 对输入特征图执行平均池化
        max_out, _ = torch.max(x, dim=1, keepdim=True)  # 对输入特征图执行最大池化
        x = torch.cat([avg_out, max_out], dim=1)  # 将两种池化的特征图连接起来
        x = self.conv1(x)  # 通过卷积层处理连接后的特征图
        return self.sigmoid(x)  # 使用sigmoid激活函数计算注意力权重


# CBAM模块
class CBAM(nn.Module):
    def __init__(self, in_planes, ratio=16, kernel_size=7):
        super(CBAM, self).__init__()
        self.ca = ChannelAttention(in_planes, ratio)  # 通道注意力实例
        self.sa = SpatialAttention(kernel_size)  # 空间注意力实例

    def forward(self, x):
        out = x * self.ca(x)  # 使用通道注意力加权输入特征图
        result = out * self.sa(out)  # 使用空间注意力进一步加权特征图
        return result  # 返回最终的特征图


# 示例使用
if __name__ == '__main__':
    block = CBAM(64)  # 创建一个CBAM模块,输入通道为64
    input = torch.rand(4, 256, 64, 64)  # 随机生成一个输入特征图
    output = block(input)  # 通过CBAM模块处理输入特征图
    print(input.size(), output.size())  # 打印输入和输出的shape进行验证

四、总结

CBAM是一种强大的注意力模块,通过结合通道注意力和空间注意力,为卷积神经网络提供了更加全面和有效的特征提取能力。这种双重注意力机制使得模型能够自适应地关注于输入特征中的关键通道和空间位置,从而提高了模型的性能。CBAM模块设计简洁、灵活,易于集成到各种现有的CNN架构中,并广泛应用于多种视觉识别任务。通过引入额外的计算量,CBAM能够在保持较低额外计算成本的同时带来显著的性能提升。

参考资料

CBAM: Convolutional Block Attention Module

版权声明

本博客内容仅供学习交流,转载请注明出处。

<think>好的,我需要回答用户关于如何在ComfyUI中收藏工作流的问题。首先,我应该回顾用户提供的引用资料,看看有没有直接提到收藏工作流的方法。引用[1]提到用户撰写了一套ComfyUI基础教程,包括工作流节点和底层逻辑,可能涉及保存或收藏工作流的步骤。引用[4]提到总结了66个工作流,可能涉及如何管理或保存这些工作流。 接下来,我需要确定用户的问题是否在引用中有直接答案。如果没有,可能需要根据一般操作流程推断。通常,收藏或保存工作流可能涉及导出配置文件、使用节点模板或插件。需要确保回答符合ComfyUI的实际操作,比如保存为JSON文件,或者通过插件管理。 然后,考虑用户可能需要详细的步骤,比如如何导出和导入工作流,或者使用哪些菜单选项。同时,用户可能希望知道如何组织这些收藏的工作流,方便以后使用。引用[3]提到生成中文字体海报的教程,可能涉及工作流的具体应用,但收藏方法可能类似。 最后,需要检查是否遗漏了引用中的关键信息,比如是否有插件推荐或社区资源,如引用[4]提到的汇总工作流网站。可能需要建议用户参考这些资源获取更多工作流模板,并指导如何保存它们。回答时结构要清晰,分步骤说明,并自然引用相关引用资料。</think>在ComfyUI中收藏工作流主要通过以下两种方式实现: ### 方法一:直接保存工作流文件 1. **导出工作流配置** - 在完成工作流搭建后,点击界面右上角的"Save"按钮 - 选择保存路径并命名文件(默认格式为.json) - 系统会自动记录所有节点配置和连接关系[^2] 2. **导入收藏的工作流** - 点击"Load"按钮选择保存的.json文件 - 所有节点布局和参数会自动还原 - 支持二次修改后另存为新版本 ### 方法二:使用节点模板库 1. **创建模板节点** - 选中需要收藏的节点组 → 右键选择"Node Templates" → "Create Template" - 为模板命名并添加功能描述 2. **调用收藏模板** - 在节点库搜索框输入模板名称 - 拖拽到画布即可复用完整功能模块 - 支持批量管理收藏的模板[^1] ### 高级管理技巧 - 建立分类文件夹:按功能(如"视频转绘"、"面部高清")整理.json文件[^4] - 使用工作流管理器插件:推荐安装`ComfyUI Manager`插件,提供云端同步功能 - 版本控制:建议在文件名添加日期(如"20240520_SVD工作流_v2.json")
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值