Python 跑深度学习遇到的一些问题集锦

TypeError: softmax() got an unexpected keyword argument ‘axis’

TypeError: softmax() got an unexpected keyword argument ‘axis’

tensorflow gan lib

tensorflow gan lib

ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory

https://zhuanlan.zhihu.com/p/28997106

https://www.jianshu.com/p/a201b91b3d96

不是版本不对应的问题,是/usr/local/cuda-9.0没开通权限的问题

Sudo Chmod -R 777 /usr/local/cuda-9.0

需要安装高版本的cuda,cudnn

export PATH=/usr/local/cuda-9.0/bin:$PATH

export LD_LIBRARY_PATH=usr/local/cuda-9.0/lib64

export CUDA_HOME=$DATA_PATH/soft/cuda-9.0

LD_LIBRARY_PATH=/DATA/119/gyhu/soft/cuda-9.0/lib64

PATH==/DATA/119/gyhu/soft/cuda-9.0/bin

SyntaxError: Non-ASCII character ‘\xe9’

SyntaxError: Non-ASCII character ‘\xe9’

Pycharm查找与替换

Pycharm查找与替换l

enumerate 用法

enumerate 用法

TypeError: Expected sequence or array-like, got <class ‘NoneType’>

空的,matlab没导入数据

Conv2DTranspose

https://blog.csdn.net/nima1994/article/details/83959495

numpy的升维和降维

numpy的升维和降维

keras怎么特征合并到一起

https://blog.csdn.net/quiet_girl/article/details/84106625
http://blog.sina.com.cn/s/blog_a14297610102x1ze.html
http://blog.sina.com.cn/s/blog_a14297610102x1ze.html
https://keras-cn-docs.readthedocs.io/zh_CN/latest/getting_started/functional_API
https://keras-cn-docs.readthedocs.io/zh_CN/latest/getting_started/sequential_model/

Keras: Merge和merge区别、Sequencial()和Model()区别

https://blog.csdn.net/quiet_girl/article/details/84106625

deep learning 调参

https://zhuanlan.zhihu.com/p/24720954

https://www.zhihu.com/question/25097993

keras的EarlyStopping callbacks的使用与技巧

https://blog.csdn.net/silent56_th/article/details/72845912
https://blog.csdn.net/zhangxin4832/article/details/81452996

ValueError: Error when checking target: expected dense_2 to have 2 dimensions, but got array with shape (990, , 2)

https://blog.csdn.net/weixin_41735859/article/details/86288356

深度学习迭代停止条件

https://deeplearning4j.org/cn/earlystopping
https://deeplearning4j.org/cn/earlystopping

https://blog.csdn.net/hyg1985/article/details/42556847

贝叶斯深度学习,可解释性

https://www.cnblogs.com/wuliytTaotao/p/10281766.html
让DL可解释?这一份66页贝叶斯深度学习教程告诉你
http://www.zhuanzhi.ai/document/bc61534f4dfc07e4e44b205abc480319
深度学习的可解释性研究(一):让模型「说人话」
https://www.leiphone.com/news/201805/Ti3mOdeRlWTplIlZ.html
https://www.leiphone.com/news/201806/PDfTEnrBfkUcggu2.html

如何计算参数大小

https://blog.csdn.net/hzhj2007/article/details/80164909

keras 最后结果精度不一致(结果固定)

keras 最后结果精度不一致(结果固定)

数据清洗

https://www.cnblogs.com/jasonfreak/p/5448385.html
https://www.cnblogs.com/jasonfreak/p/5448385.html

TypeError: float() argument must be a string or a number, not ‘map’

https://blog.csdn.net/qq_30190513/article/details/78286582

Keras中利用np.random.shuffle()打乱数据集

from numpy as np
index=np.arange(2000)
np.random.shuffle(index)
print(index[0:20])
X_train=X_train[index,:,:,:] #X_train是训练集,y_train是训练标签
y_train=y_train[index]

深度学习中学习率的选择

深度学习中学习率的选择

Keras下深度学习模型性能评估

Keras下深度学习模型性能评估

excel表格全部数据怎么乘以一个常数

excel表格全部数据怎么乘以一个常数

### 配置和运行深度学习模型 #### 在 VSCode 中配置远程服务器环境 为了在 Visual Studio Code (VSCode) 中顺利开发并执行深度学习项目,需先完成对远程服务器的支持性配置。这涉及到安装必要的扩展以及确保本地与远端之间的无缝协作。 对于 Python 解释器的选择,在使用特定版本如 `Python 3.6.0` 的情况下,如果遇到提示缺少 `ipykernel` 包的情况,则应该考虑安装该包来支持 Jupyter notebook 或者其他交互式的编程体验[^3]。 ```bash pip install ipykernel ``` #### 远程连接至服务器 通过 SSH 插件可以轻松建立到远程机器的安全连接。一旦建立了这种链接,就可以像操作本机文件一样浏览、编辑位于云端的数据集或源码文件。此外,还可以利用终端功能直接向目标主机发送指令,比如更新软件库或是激活虚拟环境等。 #### 设置合适的调试配置 当准备就绪之后,下一步就是调整 launch.json 文件内的参数以适应当前项目的特殊需求。特别是针对 GPU 加速的任务而言,可能还需要额外指定 CUDA 可见设备的数量 (`CUDA_VISIBLE_DEVICES`) 和 PyTorch 多线程处理选项(`OMP_NUM_THREADS`) 等环境变量。 #### 执行训练脚本 最后一步是在集成环境中启动训练过程。假设已经编写好了名为 `run.py` 的入口程序,并且指定了相应的超参设置: ```python import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--data_root', type=str, default='arrows_root/') parser.add_argument('--num_gpus', type=int, default=1) parser.add_argument('--num_nodes', type=int, default=1) parser.add_argument('--task_finetune_irtr_coco_randaug') parser.add_argument('--per_gpu_batchsize', type=int, default=4) parser.add_argument('--load_path', type=str, default="vilt_200k_mlm_itm.ckpt") args = parser.parse_args() # Your training code here... ``` 可以通过右键点击上述代码片段中的任意一行,选择 "Run Python File in Terminal" 来触发整个流程;或者更进一步地创建自定义任务以便于重复调用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值