(已经得到cmm的同意)CVPR2014 Objectness Estimation at 300fps.(附上程序)

这篇博客介绍了BING算法,一种在PASCAL VOC数据集上达到最佳检测率的快速目标性估计方法。该算法在测试速度上比其他方法快1000倍,只需极低的计算复杂度。BING算法的代码已公开,有望显著加速目标检测。Andrew Zisserman教授对此给出了高度评价,并预测未来一年将出现实时、高性能的多目标检测方法。研究者强调简单而有效的算法对于科研的重要性。
摘要由CSDN通过智能技术生成



       本文转自http://www.cvchina.info/2014/02/25/14cvprbing/, 感谢cmm.

    • BING: Binarized Normed Gradients for Objectness Estimation at 300fps. Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, Philip Torr, IEEE CVPR, 2014. [Project page][pdf][bib]

    亮点巨多:

    1. 在PASCAL VOC数据集上取得了State of the art的Detection Rat
    评论 61
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值