你应当掌握的三阶“换头术” - AI局部重绘完全教程

就在我以为蒙版换脸已经是AI绘画“基操”的时候,群里有朋友说他用AI画出来的脸总是胡辣汤一盆,有没有好的亚洲邪术教程?

本篇总结 Stable Diffusion万物重绘的好用方法。文章使用的AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。

蒙版换脸是 Stable Diffusion “局部重绘”的一个具体应用,核心技法有两块:如何精确的选择要重绘的区域,以及重绘时的技巧。

选择重绘区域又叫做“蒙版制作”,顾名思义就是把图片上某个区域“蒙”起来打一顿。根据自动化程度、准确性和复杂程度的不同,我把它分成了三个阶段。

为了能得到一张“脸糊了”的演示图片,我特地在低尺寸下生成了一张图:

点击发送生成物到“>>局部重绘”

初阶蒙版:手绘

在“局部重绘”面板右边,点击画笔把画笔直径调整到方便操作的精度,然后把脸涂黑。这种方式适合希望临时or局部小修小改一下,对精度要求不高的场景。优点是简单快速。

在这里插入图片描述

进阶自动化蒙版:Segment Anything 分区插件

插件安装地址:https://github.com/continue-revolution/sd-webui-segment-anything

插件界面如下:

用法说明:

1 插件有三种分区模型,主要看硬件条件。显卡不太好的选 sam_vit_l

2 让插件模型识别区域有两个方式:点阵提示词和明文提示词

点阵提示词,就是通过点涂,指引模型做区域识别。鼠标左键点出来的黑点 标识希望被识别到的区域,右键点出来的红点
标识不希望被识别到的、或者想要隔离开的区域。下面是一个示例:

希望识别的区域是脸,不希望识别的区域是左边头发、右边头发、衣服和右边脸之外的环境,都打上红点。点击下面的预览后会默认提供三个识别结果。可以看到识别效果杠杠的,比初阶自己手涂要精确很多了。

明文提示词,则是通过提示词来引导模型,对图像做区域识别,如图填入希望识别的器官,比如眼睛、脸、头发。把下图中另外两个选项也勾上方便预览:

选择 Generate bounding box
后,会根据你提供的提示词,精准识别图像区域,同时分别做标号。你可以根据需要,多选标号,把标号区域都制作成蒙版,或者只制作单个识别对象的蒙版

在这里插入图片描述

比如当我只选择0号时,就只会制作一个头发的蒙版

想象一下你要自己把这么细碎不规律的头发用手抠出来多么麻烦。

同时选择1、2、3,我们就得到了期望的脸部蒙版

模板生成出来后,点击放大,右键另存为,后面重绘用。

高阶蒙版:Inpaint Anything 插件:重绘一切

插件地址:https://github.com/Uminosachi/sd-webui-inpaint-anything

这个插件名字听起来就很牛逼,事实上也的确很牛逼。安装后,你的标签面板上会多出一个同名标签。载入那张糊了脸的底图,点击
Run,就会把整张图片所有能被识别到的区域,都自动识别出来:

你只需要在你希望生成模板的区域,用鼠标左键点击即可,比如我这里点了耳朵和脸,然后点击 Create Mask,即生成了对应的蒙版。

左侧区域自带重绘功能,可以直接从文生图或者图生图里面导入提示词进行重绘

以上两个插件都需要下载自有模型,如果下载有困难的文末扫码找我拿~

为了方便演示,这里假设你已经通过上面的进阶蒙版方法,得到了一张蒙版。选择图生图的“局部重绘(上传蒙版)”,把那张糊脸原图和蒙版加载进来。

四个划线的参数是基操,没解释,照着做。右边那个数字主要是用来控制重绘出来的东西和原图的融合程度。数字小就会显得割裂和分离。默认32不用动。

然技巧环节。对于重绘质量影响的几个关键要素分别是:采样模型的选择、采样迭代步数、宽度和高度、重绘幅度、ADTAILER。我们采用控制变量法进行重绘效果比对:

不变量:尺寸 360*360 重绘幅度 0.5 采样迭代步数 20

不同采样方法 原图 、 Eular a 、 DPM++ 2 Sa Karras

不变量:采样方法 Eular a 重绘幅度 0.5 采样迭代步数 20

不同尺寸 :原图 360360、512512

不变量:采样方法 Eular a 重绘幅度 0.5 尺寸 360*360

不同采样迭代步数 :原图20、48

**不变量:采样方法 Eular a 尺寸 360*360 采样迭代步数 20
**

不同重绘幅度:原图、0.33、0.44、0.55、0.6、0.75

原图 vs +AdTailer

所以我们得出了(面部)重绘的一些黄金经验:

1 最佳重绘尺寸是512*512
。这个数值的理论支撑是,大多数大模型的训练素材都是这个尺寸的。理论上768或者1024也行,看你的显卡。小了当然会糊,这也是为什么我绞劲脑汁用360才生成了糊脸演示用底图

2 DPM 系列模型的重绘能力优于 Eular a

3 与原图神似的最佳重绘幅度是 0.3 - 0.5

4 慎用大采样步数 ,避免在 Eular a 这类模型上面使用大步数,容易变形

5 ADTailer是神器 ,建议作为出任何图形的默认配置加到提示词中。

最后是迭所有buff于一身的重绘效果对比。结果图重绘了两次,第一次重绘了脸,第二次用反向蒙版把除了脸以外的其他部分重绘了一遍。

但由于AIGC刚刚爆火,网上相关内容的文章博客五花八门、良莠不齐。要么杂乱、零散、碎片化,看着看着就衔接不上了,要么内容质量太浅,学不到干货。

这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。

有需要的朋友,可以长按下方二维码,免费领取!

请添加图片描述

AIGC所有方向的学习路线思维导图

这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
在这里插入图片描述

AIGC工具库

AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

精品AIGC学习书籍手册

书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。

在这里插入图片描述

AI绘画视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。

在这里插入图片描述

有需要的朋友,可以长按下方二维码,免费领取!

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值