随着人们日益提高的生活水平,对于商品的要求也都趋于个性化,个性化的推荐系统也就顺势而生。这篇文章作者详细拆解了推荐系统的运作方式以及用户的“潜意识”,感兴趣的小伙伴一起来看看吧~
随着人们日益提高的生活水平,对于商品的要求也都趋于个性化。每个人对于商品的喜好都有着自己的习惯,而抓住习惯并养成也是电商平台推广宣传的有效手段,就这样推荐系统应运而生。
推荐顾名思义按照用户的喜好和行为推荐可以满足用户诉求和需要的商品以求达到用户购买的目的。广义上来讲所有主动推送给用户的商品信息都可以视作推荐的范畴,而这里面具有商业变现能力的商品推荐又叫做广告。广告的管理一般会由单独的广告系统负责,下文讲述的推荐主要指除广告以外的商品推荐内容。
一、推荐的基础信息
推荐系统从根本上是为了解决营销选品决策的问题,所有就需要有一些指标来衡量和评估效果为后续的推荐策略参数调整和方式进行优化提过依据。常见的推荐系统的指标和搜索的比较类似包括准确率、召回率以及新颖度等。
- 准确率(Precision):表示召回的商品中推荐正确的商品占整体召回商品的百分比。
- 召回率(Recall):表示召回的商品占整体商品的百分比。
- 新颖度:表示推荐长尾区间的商品情况,如果推荐商品都是热门商品,即新颖度很低,反之则新颖度较高。
- CTR:点击率,也是广告系