OpenCV的人脸检测模型FaceDetectorYN

1. 官网地址

https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html
FaceDetectorYNopencv内置的一个人脸检测方法,使用的是yunet

这是一个DNN-based face detector.模型的下载地址:
https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet
在这里插入图片描述

2. 如何使用

2.1.到opencv_zoo下载模型文件和代码

在这里插入图片描述

2.2. 下载文件展示

在这里插入图片描述

2.3. 修改了demo支持读取视频文件,默认是图片和摄像头

# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.

import argparse

import numpy as np
import cv2 as cv

# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
    "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"

from yunet import YuNet

# Valid combinations of backends and targets
backend_target_pairs = [
    [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
    [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
    [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
    [cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
    [cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]

parser = argparse.ArgumentParser(
    description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).')
parser.add_argument('--input', '-i', type=str,
                    help='Usage: Set input to a certain image, omit if using camera.')
parser.add_argument('--model', '-m', type=str, default='face_detection_yunet_2023mar.onnx',
                    help="Usage: Set model type, defaults to 'face_detection_yunet_2023mar.onnx'.")
parser.add_argument('--backend_target', '-bt', type=int, default=0,
                    help='''Choose one of the backend-target pair to run this demo:
                        {:d}: (default) OpenCV implementation + CPU,
                        {:d}: CUDA + GPU (CUDA),
                        {:d}: CUDA + GPU (CUDA FP16),
                        {:d}: TIM-VX + NPU,
                        {:d}: CANN + NPU
                    '''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--conf_threshold', type=float, default=0.7,
                    help='Usage: Set the minimum needed confidence for the model to identify a face, defauts to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.')
parser.add_argument('--nms_threshold', type=float, default=0.3,
                    help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.')
parser.add_argument('--top_k', type=int, default=5000,
                    help='Usage: Keep top_k bounding boxes before NMS.')
parser.add_argument('--save', '-s', action='store_true',
                    help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
                    help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
parser.add_argument('--camera_or_video', '-c', default='123.mov',
                    help='Usage: Specify to open camera or video')
args = parser.parse_args()


def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 255, 255), fps=None):
    output = image.copy()
    landmark_color = [
        (0, 0, 255),  # right eye
        (0, 0, 255),  # left eye
        (0, 255, 0),  # nose tip
        (255, 0, 255),  # right mouth corner
        (0, 255, 255)  # left mouth corner
    ]

    if fps is not None:
        cv.putText(output, 'FPS: {:.2f}'.format(fps), (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.5, text_color)

    for det in results:
        bbox = det[0:4].astype(np.int32)
        cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0] + bbox[2], bbox[1] + bbox[3]), box_color, 2)

        conf = det[-1]
        cv.putText(output, '{:.4f}'.format(conf), (bbox[0], bbox[1] + bbox[3] // 2), cv.FONT_HERSHEY_DUPLEX, 1.5, text_color)

        landmarks = det[4:14].astype(np.int32).reshape((5, 2))
        for idx, landmark in enumerate(landmarks):
            cv.circle(output, landmark, 4, landmark_color[idx], 10)

    return output


if __name__ == '__main__':
    backend_id = backend_target_pairs[args.backend_target][0]
    target_id = backend_target_pairs[args.backend_target][1]

    # Instantiate YuNet
    model = YuNet(modelPath=args.model,
                  inputSize=[320, 320],
                  confThreshold=args.conf_threshold,
                  nmsThreshold=args.nms_threshold,
                  topK=args.top_k,
                  backendId=backend_id,
                  targetId=target_id)

    # If input is an image
    if args.input is not None:
        image = cv.imread(args.input)
        h, w, _ = image.shape

        # Inference
        model.setInputSize([w, h])
        results = model.infer(image)

        # Print results
        print('{} faces detected.'.format(results.shape[0]))
        for idx, det in enumerate(results):
            print(
                '{}: {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f}'.format(
                    idx, *det[:-1])
            )

        # Draw results on the input image
        image = visualize(image, results)

        # Save results if save is true
        if args.save:
            print('Resutls saved to result.jpg\n')
            cv.imwrite('result.jpg', image)

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, image)
            cv.waitKey(0)
    else:  # Omit input to call default camera
        deviceId = args.camera_or_video
        cap = cv.VideoCapture(int(deviceId) if deviceId.isdigit() else deviceId)
        w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
        h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
        model.setInputSize([w, h])
        fps = int(cap.get(cv.CAP_PROP_FPS))

        # 定义视频编码器和创建VideoWriter对象
        fourcc = cv.VideoWriter_fourcc(*'mp4v')  # 或者使用 'XVID'
        out = cv.VideoWriter('output.mp4', fourcc, fps, (w, h))


        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            # Inference
            tm.start()

            hasFrame, frame = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            results = model.infer(frame)  # results is a tuple
            tm.stop()

            # Draw results on the input image
            frame = visualize(frame, results, fps=tm.getFPS())

            # Visualize results in a new Window
            cv.imshow('YuNet face detection', frame)
            # tm.reset()
            # 写入视频文件
            out.write(frame)

        out.release()
        cap.release()

cv.destroyAllWindows()

## 2.4 效果展示

吕一_faces_detection

<think>好的,用户需要关于OpenCV人脸识别的网络模型或方法的使用教程。首先,我需要回忆OpenCV中支持的相关深度学习模型。记得OpenCV从3.x版本开始支持深度学习模块,可以加载预训练的模型,比如FaceNet、OpenFace等。另外,OpenCV自带的FaceRecognizer类也提供了一些传统方法,比如EigenFace、FisherFace和LBPH,不过这些可能不是基于深度学习的。 用户可能更关注深度学习模型,所以需要重点介绍如何用OpenCV加载和使用这些模型。比如,使用dnn模块读取预训练的Caffe或TensorFlow模型。常见的模型OpenCV自带的FaceDetectorYN人脸识别模型FaceRecognizerSF,这两个是较新的模型,支持实时检测和识别。 接下来需要整理步骤:安装OpenCV下载预训练模型文件、加载模型、进行人脸检测和识别。同时,用户可能需要代码示例,比如如何用dnn模块加载ResNet或MobileNet结构的模型,并进行人脸特征提取。 还要注意引用用户提供的参考内容,比如OpenCV的解决方案,包括处理光照、姿态等问题。另外,用户可能对实际应用中的问题解决策略感兴趣,需要提及这些方面。 最后,生成相关问题时要覆盖模型选择、性能优化、与传统方法的对比,以及实际应用中的挑战等。确保回答结构清晰,分步骤说明,并提供可运行的代码示例,帮助用户实际操作。</think>### OpenCV人脸识别网络模型使用教程 OpenCV支持多种人脸识别网络模型,包括传统方法和深度学习框架。以下是基于深度学习模型的实现流程: #### 一、环境准备 1. 安装OpenCV深度学习模块: ```bash pip install opencv-python-headless>=4.5.4 ``` 2. 下载预训练模型文件: - 人脸检测模型:*yunet.onnx*(OpenCV官方提供) - 人脸识别模型:*face_recognizer_fb.onnx*(OpenCV官方模型) #### 二、人脸检测+识别完整流程 ```python import cv2 # 初始化模型 detector = cv2.FaceDetectorYN_create("yunet.onnx", "", (320, 320)) recognizer = cv2.FaceRecognizerSF_create("face_recognizer_fb.onnx", "") # 读取图像 img = cv2.imread("test.jpg") # 人脸检测 detector.setInputSize((img.shape[1], img.shape[0])) _, faces = detector.detect(img) # 特征提取 if faces is not None: face_align = recognizer.alignCrop(img, faces[0]) feature = recognizer.feature(face_align) # 特征比对(假设已有数据库特征) # similarity = recognizer.match(feature, db_feature, cv2.FaceRecognizerSF_FR_COSINE) ``` #### 三、关键模型说明 1. **YuNet人脸检测器**: - 专为边缘设备优化的轻量级CNN - 支持多角度人脸检测 - 检测速度在CPU上可达30FPS 2. **FaceRecognizerSF**: - 基于ResNet-34的改进架构 - 输出128维特征向量 - 使用余弦相似度进行特征匹配 $$ \text{相似度} = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}|| \cdot ||\vec{b}||} $$ #### 四、实际应用建议 1. **性能优化**: - 输入图像缩放至640x480分辨率 - 使用多线程处理视频流 - 设置检测置信度阈值(推荐0.9) 2. **常见问题处理**: - 光照变化:使用直方图均衡化预处理 - 遮挡问题:设置人脸区域完整性检测 - 姿态变化:采用三维人脸对齐技术[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值