Codeforces 914C (数位dp)

题意:求小于n的并且恰好经过k次变化后成1的数的个数,变化规则为:x -> (x的二进制的1个数);

思路: 应为给出的数二进制位数最多为1000,所以1000 -> 10 -> 3 -> 2 -> 1,差不多就是这样,变化次数k在6以内。所以我们对1000打个表,表示成二进制1的位数为i的时候要经过多少次变成1。

接下来就是数位dp,其实就是记忆化搜索,加上是数位上的操作,称其为数位dp。

PS:一定要注意1,当k==1的时候,1不是答案里边的值。


#include<bits/stdc++.h>

using namespace std;
const int maxn = 1e3 + 10;
typedef long long ll;
#define clr(x,y) memset(x,y,sizeof x)
#define INF 0x3f3f3f3f
typedef pair<int,int> P;
const ll Mod = 1e9 + 7;

char s[maxn];
ll dp[3][maxn][maxn][10];
int k;
int cnt[maxn];
ll dfs(ll pos,int pre,int num,bool flag)
{
    if(pos < 0)return cnt[num] == k;
    if( !flag && dp[pre][pos][num][k] != -1)return dp[pre][pos][num][k];
    int up = flag ? s[pos] : 1;
    ll ret = 0;
    for(int i = 0;i <= up;i ++)
    {
        ret = (ret + dfs(pos - 1,i,num + (i == 1),flag && i == up) % Mod ) % Mod;
    }
    if(!flag)
        dp[pre][pos][num][k] = ret;
    return ret;
}

void solve()
{
    int len = strlen(s);
    reverse(s,s + len);for(int i = 0;i < len;i ++)s[i] -= '0';
    ll ans = dfs(len - 1,0,0,true);
    ans = (ans % Mod + Mod) % Mod;
    if(k == 1 && ans )ans --;
    printf("%lld\n",ans);
}

int get(int x)
{
    if(x == 1)
        return 0;
    int cnts = 0;
    while(x){if(x % 2)cnts ++; x /= 2;}
    return 1 + get(cnts);
}
void Init()
{
    for(int i = 1;i < maxn;i ++)
    {
        cnt[i] = get(i) + 1;
    }
}
int main()
{
    clr(dp,-1);Init();
    while( ~ scanf("%s",s))
    {
        scanf("%d",&k);
        solve();
    }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值