题意:求小于n的并且恰好经过k次变化后成1的数的个数,变化规则为:x -> (x的二进制的1个数);
思路: 应为给出的数二进制位数最多为1000,所以1000 -> 10 -> 3 -> 2 -> 1,差不多就是这样,变化次数k在6以内。所以我们对1000打个表,表示成二进制1的位数为i的时候要经过多少次变成1。
接下来就是数位dp,其实就是记忆化搜索,加上是数位上的操作,称其为数位dp。
PS:一定要注意1,当k==1的时候,1不是答案里边的值。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e3 + 10;
typedef long long ll;
#define clr(x,y) memset(x,y,sizeof x)
#define INF 0x3f3f3f3f
typedef pair<int,int> P;
const ll Mod = 1e9 + 7;
char s[maxn];
ll dp[3][maxn][maxn][10];
int k;
int cnt[maxn];
ll dfs(ll pos,int pre,int num,bool flag)
{
if(pos < 0)return cnt[num] == k;
if( !flag && dp[pre][pos][num][k] != -1)return dp[pre][pos][num][k];
int up = flag ? s[pos] : 1;
ll ret = 0;
for(int i = 0;i <= up;i ++)
{
ret = (ret + dfs(pos - 1,i,num + (i == 1),flag && i == up) % Mod ) % Mod;
}
if(!flag)
dp[pre][pos][num][k] = ret;
return ret;
}
void solve()
{
int len = strlen(s);
reverse(s,s + len);for(int i = 0;i < len;i ++)s[i] -= '0';
ll ans = dfs(len - 1,0,0,true);
ans = (ans % Mod + Mod) % Mod;
if(k == 1 && ans )ans --;
printf("%lld\n",ans);
}
int get(int x)
{
if(x == 1)
return 0;
int cnts = 0;
while(x){if(x % 2)cnts ++; x /= 2;}
return 1 + get(cnts);
}
void Init()
{
for(int i = 1;i < maxn;i ++)
{
cnt[i] = get(i) + 1;
}
}
int main()
{
clr(dp,-1);Init();
while( ~ scanf("%s",s))
{
scanf("%d",&k);
solve();
}
return 0;
}