169. 多数元素

本文介绍了如何利用Go语言的map数据结构,以O(1)空间复杂度优化查找数组中的多数元素。首先,展示了传统计数方法的不足,然后详细讲解了一种更节省空间的算法,通过迭代更新候选元素和计数。最后,对比了两种方法的时间和空间效率。
摘要由CSDN通过智能技术生成

给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在多数元素。

最笨的方法就是申请一个数组记录每个元素出现的次数,最后遍历这个数据取出数据最大的,但是第一感觉这是个笨方法。

考虑到go的map,可以直接统计到同一个key,上代码

func majorityElement(nums []int) int {
	visited := make(map[int]int, len(nums)/2+1)
	for i:=0;i<len(nums);i++{
		visited[nums[i]]++
	}
	for k, v := range visited{
		if v > len(nums) /2{
			return k
		}
	}
	return -1
}

这个的空间复杂度不是o(1),去看了官方思想,说了一个算法,求众数,但是提交运算后时间和空间复杂度是一样的消耗

func majorityElement(nums []int) int {
	candidate := 0
	count := 0
	for i:=0;i<len(nums);i++{
		if count == 0{
			candidate = nums[i]
		}
		if candidate == nums[i]{
			count++
		}else{
			count--
		}
	}
	return candidate
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值