深度学习
XiaomengYe
脚踏实地,专注,升华
展开
-
自动微分(Automatic Differentiation)简介
转载地址:https://blog.csdn.net/aws3217150/article/details/70214422上面的文章写的非常好,不多做介绍,只说下自己对于两种自动微分的理解。1. 首先不认同后向自动微分就是backprop这种说法,只能说两者都依赖于chain rule,形式上类似。且NN的backprop的情况是,输入x确定,结构不确定;反观后向微分,是x不确定,而结构...转载 2019-07-03 08:47:17 · 1334 阅读 · 0 评论 -
滑动平均基本知识点
滑动平均在对于数据做统计的时,数据抖动是一个很常见的现象,如何防止这种抖动是我们感兴趣的。滑动平均就是这样一种技术,其本质是借助历史记录来创造可以替代原始数据的数据。举个例子,下图是伦敦一年四季温度变化的图片,横轴为时间(天为单位),纵轴为一天的平均温度:温度记录theta为如下所示:我们使用以下公式来计算加权平均温度vt: ...原创 2019-06-24 16:07:17 · 27873 阅读 · 9 评论 -
反向传播算法推导
参考文献:[1]神经网络与深度学习(邱锡鹏)原创 2019-07-04 08:19:35 · 306 阅读 · 0 评论 -
Written Memories: Understanding, Deriving and Extending the LSTM
转载地址:Written Memories: Understanding, Deriving and Extending the LSTM这篇文章前半段讲得挺好的,尤其是梯度消失那一块,并没有从BPTT的角度解释;而是从状态变化近端远端相互影响的角度。文章后段充斥着各种引用,文字个人感觉不够精炼~~,非有精力和有时间的人不能细读。这篇文章的简化易懂版:https://medium.com/...转载 2019-07-18 08:04:45 · 193 阅读 · 0 评论 -
深度学习的几种常见loss function
先说说深度学习最后一层激励函数,主要分两大类,softmax和sigmoid;sigmoid针对二分类问题,只需要一个标量的输入即可计算激励函数(当然输出也是一个标量): ...原创 2019-08-13 14:46:53 · 1634 阅读 · 0 评论