矩阵与线性代数
XiaomengYe
脚踏实地,专注,升华
展开
-
机器学习中的矩阵方法(附录A): 病态矩阵与条件数
转载地址:https://www.cnblogs.com/daniel-D/p/3219802.html思路:利用范数考察Ax = b中b的扰动对于x的影响转载 2019-07-03 23:51:01 · 555 阅读 · 0 评论 -
Linear Algebra Review (3) -- inner product、norm、cachyschwaz inequality
内积向量空间(此处的向量是抽象的向量,可以是vector、matrix、甚至是function)中有两个向量 x 和 y,通常我们会很自然的想到这两个向量之间是有关系的,那么怎样去衡量这样一种关系?这就引出了内积的概念。内积就是向量空间 V 中的向量对 x和y 的一个运算,它使得x,y与一个实数 <x,y>产生了关联。当然为了方便运用,我们为这种运算提供了一些限制条件:(...原创 2019-07-02 13:59:03 · 385 阅读 · 0 评论 -
矩阵微积分(二)
矩阵微分的一般方法首先说明,我们的方法主要在是在denominator layout 框架下。按照微分分子分母的类型,我们可以给矩阵微分分为几个类别。如果 scalar / vector、vector / matrix 等等。我们不需要记住每一种情况下的规则。除却涉及矩阵的微分计算(形式比较特殊),我们首先需要记住的是微分计算的两个个法则:乘法法则、和链式法则(加法法则比较简单直观,无需...原创 2019-07-02 01:44:39 · 4954 阅读 · 0 评论 -
矩阵微积分(一)
矩阵微分的研究范围并不是任何形式的矩阵都可以做微分,我们首先需要规定下矩阵微分的范围:上图中灰色的部分,我们不做研究矩阵微分的两套标准矩阵微积分相比较标量的微积分,形式上比较复杂,标准也不统一。其中比较常见的是 denominator layout 和 numerator layout,前者的微分结果形式上和分母类似,后者反之。例如 y 为 m 维列向量,x 为 n 维列向量,...原创 2019-07-02 00:25:02 · 4992 阅读 · 0 评论 -
Linear Algebra Review (1) -- Eigenvalues
由于工作和学习多涉及到机器学习,所以线性代数的知识自然是少不了的。回顾自己的本科和研究生生涯,数学功底比较扎实的,线性代数相关的一些基础概念如矩阵乘法,相关性,矩阵的秩等等记得很清晰的。但并非那么直观的概念像特征向量、二次型,空间转换相关概念,虽然复习了之后很快能想起来,但过了一段时间之后又会忘掉。确实线性代数比起高等数学和概率论,更加抽象一些,大概是因为现实生活中找不到相近的对照吧,这也是不易记...原创 2019-04-13 13:17:50 · 338 阅读 · 0 评论 -
奇异值分解(SVD)简介
奇异值分解(SVD)的应用广泛,它在数据降维,推荐系统以及自然语言处理等方面都有突出的表现,另外,它还是PCA算法简化的基石。SVD原理我们假设有n * m的矩阵 X,的阶为r。作为引出SVD的准备,我有以下定义:1.为的特征向量,v_i为m维,对应的特征值为,所以有 ...原创 2019-04-12 18:40:12 · 3261 阅读 · 0 评论 -
主成分分析(PCA)简介
主成分分析,或者成为PCA,是一种被广泛使用的技术,应用领域包括维度降低,有损数据压缩,特征抽取,数据可视化。有两种PCA的定义方式,我们这里主要介绍第一种定义方式,即数据在低维空间上的投影,使得投影方差最大化。PCA原理假设我们有数据集合,n = 1...N,我们要把它投影到一个M维的低维空间当中去(M<N)。为了达到这个目的,我们首先要对数据做归一化,使得数据在每个维度上均值为...原创 2019-04-10 10:47:55 · 433 阅读 · 0 评论 -
仿射空间
直观理解仿射空间向量空间(也叫线性空间)我们是很熟悉的,那么可以借助向量空间给仿射空间一个直观的定义:仿射空间就是没有原点的向量空间。向量空间没有了原点,会有什么样的影响?向量是基于原点的,向量有两个元素-大小、方向,大小任意给出两个点就可以衡量,但没有了原点,我们是无法用一个统一的标准来衡量方向的,也正因如此,仿射空间包含点集而不单纯是向量集。更进一步,没有了统一标准的向量,那么向量...原创 2019-09-27 15:35:50 · 8818 阅读 · 0 评论