flink 用户购买行为跟踪

项目下载地址  https://github.com/peigenxiao/learning-flink

需求:

     电商公司出于提高用户的复购率、粘连度等目的经常会推出各种营销手段,运营部们希望数据中心能实时跟踪用户的购买行为作为推送各种优惠的依据,能实时把可以推送优惠券的用户推送给相关应用;

分析:

  • 用户的购买行为可以用很多指标来衡量,例如:购买路径长度、购买次数、购买频率、感兴趣类日、感兴趣商品等等。
  • 本项目以跟踪用户购买路径长度为例来做分析:用户在手机App上操作行为我们抽象为事件,通过跟踪用户事件来实时触发指定的操作,比如推送优惠券。在众多的事件中,购买路径长度是推送优惠券比较关注的一个指标,对于提高复购率比较关键
  • 一个用户在App上经过多次操作之后,比如浏览了几个商品、将浏览过的商品加入购物车、将购物车中的商品移除购物车等等,最后发生了购买行为,那么对于用户从开始到最终达成购买所进行操作的行为的次数,我们定义为用户购物路径长度。

我们把用户的各做操作抽象为以下四类(实际中会更多):
>VIEW_PRODUCT
>ADD_TO_CART
>REMOVE_FROM_CART
>PURCHASE

  • 用户在最终下单购买前,会经过一系列操作:VIEW_PRODUCT、ADD_TO_CART、REMOVE_FROM_CART的不同组合,每个也可以重复操作多次,最终发生购买即PURCHASE的行为,然后我们对该用户计算其购物路径长度
  • 当购买路径长度大于配置的最大路径时通过消息触发后续营销行为
  • 不同频道最大购买路径设置可能不一样(动态配置/动态规则)

方案:

利用kafka消息队列收集用户操作作为事件流,利用kafka将配置参数作为广播流,利用flink将两个流进行合并处理写入kafka

一、课程简介随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。二、课程内容本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。三、课程目标本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。四、课程亮点本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值