归并排序(MERGE-SORT)
1.基本介绍
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
2.归并排序思想示意图
1、基本思想:
- 可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程
2、合并相邻有序子序列 - 再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤
- 代码实现
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
/*int arr[] = {8, 4, 13, 5, 11, 7, 10, 0, 15, 1, 6, 2, 9, 12, 3, 14};
int temp[] = new int[arr.length];
System.out.println("排序之前: " + Arrays.toString(arr));
mergeSort(arr, 0, arr.length - 1, temp);
System.out.println("排序之前: " + Arrays.toString(arr));*/
int arr[] = new int[8000000];
int temp[] = new int[arr.length];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int)(Math.random() * 1000000000); //随机生成一个[0,1000000)之间的数
}
//开始时间
long startTime = System.currentTimeMillis();
mergeSort(arr, 0, arr.length - 1, temp);
long endTime = System.currentTimeMillis();
System.out.println("排序花了: " + (endTime - startTime) + "ms");
}
//分+和
public static void mergeSort(int arr[], int left, int right, int temp[]) {
if (left < right) {
int mid = (left + right) / 2;
//向左递归
mergeSort(arr, left, mid, temp);
//向右递归
mergeSort(arr, mid + 1, right, temp);
//合并(先合并左边的在合并右边的)
merge(arr, left, mid, right, temp);
}
}
/**
* 合并的方法
*
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 最右边的索引
* @param temp 临时数组
*/
public static void merge(int arr[], int left, int mid, int right, int temp[]) {
int i = left; //左边有序序列的初始索引
int j = mid + 1; //右边有序序列的初始索引
int t = 0; //临时数组temp的初始索引
//1.将左右两边(有序)的数据按照规则填充到temp数组中,知道左右两边的有序数组有一边处理完毕
while (i <= mid && j <= right) {
if (arr[i] <= arr[j]) { //如果左边的元素 <= 右边的元素 则将左边的元素存入临时数组
temp[t] = arr[i];
i++;
t++;
} else { //如果左边的元素 > 右边的元素 则将右边的元素存入临时数组
temp[t] = arr[j];
j++;
t++;
}
}
//2.将有剩余数据的一边的全部剩余数据全部存入临时数组后面
while (i <= mid) { //将左边剩余的数据全部存入临时数组
temp[t] = arr[i];
i++;
t++;
}
while (j <= right) { //将右边剩余数据全部存入临时数组
temp[t] = arr[j];
j++;
t++;
}
//3.将temp数组中的元素拷贝到arr中,并不是每次全部拷贝!
t = 0;
int tempLeft = left;
while (tempLeft <= right) {
// System.out.println("t = " + t + "; tempLeft = " + tempLeft);
arr[tempLeft] = temp[t];
t++;
tempLeft++;
}
}
}
- 结果: