吴恩达机器学习(第二周)-4、多变量线性回归(Linear Regression with Multiple Variables)

4.1 多特征(Multiple Features)

对于一个要度量的对象,一般来说会有不同维度的多个特征。比如之前的房屋价格预测例子中,除了房屋的面积大小,可能还有房屋的年限、房屋的层数等等其他特征:

这里由于特征不再只有一个,引入一些新的记号

n: 特征的总数

x(i): 代表样本矩阵中第 i 行,也就是第 i 个训练实例。

xj(i): 代表样本矩阵中第 i 行的第 j 列,也就是第 i 个训练实例的第 j 个特征。

参照上图,则有 ${x}^{(2)}\text{=}\begin{bmatrix} 1416\\ 3\\ 2\\ 40 \end{bmatrix}, {x}^{(2)}_{1} = 1416$

多变量假设函数 h 表示为:$h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}}$

对于 θ0,和单特征中一样,我们将其看作基础数值。例如,房价的基础价格。

参数向量的维度为 n+1,在特征向量中添加 x0 后,其维度也变为 n+1, 则运用线性代数,可简化 h:

hθ(x)=[θ0;θ1;...;θn][x0x1⋮xn]=θTx

θT: θ 矩阵的转置

x: 某个样本的特征向量,$n+1$ 维特征量向量

x0: 为了计算方便我们会假设 x0(i)=1

注:该部分记号较多,记不住可随时回顾!

4.2 多变量梯度下降(Gradient Descent for Multiple Variables)

多变量代价函数类似于单变量代价函数,

即 J(θ0,θ1...θn)=12m∑i=1m(hθ(x(i))−y(i))2 ,其中 hθ(x)=θTx。

前文提到梯度下降对于最小化代价函数的通用性,则多变量梯度下降公式即

$$ \begin{align*} & \text{Repeat until convergence:} ; \lbrace \ &{{\theta }{j}}:={{\theta }{j}}-\alpha \frac{\partial }{\partial {{\theta }{j}}}J\left( {\theta{0}},{\theta_{1}}...{\theta_{n}} \right) \ \rbrace \end{align*} $$

解出偏导得:

repeat until convergence:;{θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))⋅xj(i);for j := 0,1...n}

可展开为:

repeat until convergence:;{θ0:=θ0−α1m∑i=1m(hθ(x(i))−y(i))⋅x0(i)θ1:=θ1−α1m∑i=1m(hθ(x(i))−y(i))⋅x1(i)θ2:=θ2−α1m∑i=1m(hθ(x(i))−y(i))⋅x2(i)⋮θn:=θn−α1m∑i=1m(hθ(x(i))−y(i))⋅xn(i)}

当然,同单变量梯度下降一样,计算时需要同时更新所有参数。

hθ(x)=θTx,则得到同时更新参数的向量化(Vectorization)实现: $$ \theta = \theta - \alpha \frac{1}{m}(X^T(X\theta-y)) $$

X: 训练集数据,$m\times(n+1)$ 维矩阵(包含基本特征 x0=1)

4.3 梯度下降实践1-特征值缩放(Gradient Descent in Practice I - Feature Scaling)

在应用梯度下降算法实践时,由于各特征值的范围不一,可能会影响代价函数收敛速度。

以房价预测问题为例,这里选取房屋面积大小和房间数量这两个特征。

下图中,左图是以原始数据绘制的代价函数轮廓图,右图为采用特征缩放(都除以最大值)后图像。左图中呈现的图像较扁,相对于使用特征缩放方法的右图,梯度下降算法需要更多次的迭代。

为了优化梯度下降的收敛速度,采用特征缩放的技巧,使各特征值的范围尽量一致

除了以上图人工选择并除以一个参数的方式,**均值归一化(Mean normalization)**方法更为便捷,可采用它来对所有特征值统一缩放:

xi:=xi−average(x)maximum(x)−minimum(x), 使得 xi∈(−1,1)

对于特征的范围,并不一定需要使得 −1⩽x⩽1,类似于 1⩽x⩽3 等也是可取的,而诸如 −100⩽x⩽100,$-0.00001 \leqslant x \leqslant 0.00001$,就显得过大/过小了。

另外注意,一旦采用特征缩放,我们就需对所有的输入采用特征缩放,包括训练集、测试集、预测输入等。

4.4 梯度下降实践2-学习速率(Gradient Descent in Practice II - Learning Rate)

通常,有两种方法来确定函数是否收敛

  • 多次迭代收敛法
    • 无法确定需要多少次迭代
    • 较易绘制关于迭代次数的图像
    • 根据图像易预测所需的迭代次数
  • 自动化测试收敛法(比较阈值)
    • 不易选取阈值
    • 代价函数近乎直线时无法确定收敛情况

对于梯度下降,一般采用多次迭代收敛法来得出最小化代价函数的参数值,自动化测试收敛法(如设定 J(θ)<10−3 时判定收敛)则几乎不会被使用。

我们可以通过绘制代价函数关于迭代次数的图像,可视化梯度下降的执行过程,借助直观的图形来发现代价函数趋向于多少时能趋于收敛,依据图像变化情况,确定诸如学习速率的取值,迭代次数的大小等问题。

对于学习速率 α,一般上图展现的为适中情况,下图中,左图可能表明 α 过大,代价函数无法收敛,右图可能表明 α 过小,代价函数收敛的太慢。当然,$\alpha$ 足够小时,代价函数在每轮迭代后一定会减少。

通过不断改变 α 值,绘制并观察图像,并以此来确定合适的学习速率。 尝试时可取 α 如 …;0,001,;0.003,;0.01,;0.03,;0.1,;…

4.5 特征和多项式回归(Features and Polynomial Regression)

在特征选取时,我们也可以自己归纳总结,定义一个新的特征,用来取代或拆分旧的一个或多个特征。比如,对于房屋面积特征来说,我们可以将其拆分为长度和宽度两个特征,反之,我们也可以合并长度和宽度这两个特征为面积这一个特征。

线性回归只能以直线来对数据进行拟合,有时候需要使用曲线来对数据进行拟合,即多项式回归(Polynomial Regression)

比如一个二次方模型:$h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2}$

或者三次方模型:$h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2}+{\theta_{3}}{x_{3}^3}$

或者平方根模型: hθ(x)=θ0+θ1x1+θ2x22+θ3x3

在使用多项式回归时,要记住非常有必要进行特征缩放,比如 x1 的范围为 1-1000,那么 x12 的范围则为 1- 1000000,不适用特征缩放的话,范围更有不一致,也更易影响效率。

4.6 正规方程(Normal Equation)

对于一些线性回归问题来说,正规方程法给出了一个更好的解决问题的方式。

正规方程法,即令 ∂∂θjJ(θj)=0 ,通过解析函数的方式直接计算得出参数向量的值 θ=(XTX)−1XTy ,Octave/Matlab 代码: theta = inv(X'*X)*X'*y

X−1: 矩阵 X 的逆,在 Octave 中,inv 函数用于计算矩阵的逆,类似的还有 pinv 函数。

X': 在 Octave 中表示矩阵 X 的转置,即 XT

下表列出了正规方程法与梯度下降算法的对比

条件梯度下降正规方程
是否需要选取 α需要不需要
是否需要迭代运算需要不需要
特征量大1适用,$O\left(kn^2\right)$不适用,$(X^TX)^{-1}$ 复杂度 O(n3)
适用范围2各类模型只适用线性模型,且矩阵需可逆

正规方程法的推导过程: $$ \begin{aligned} J\left( \theta \right)& =\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {h_{\theta}}\left( {x^{(i)}} \right)-{y^{(i)}} \right)}^{2}}}\ & =\frac{1}{2m}||X\theta-y||^2 \ & =\frac{1}{2m}(X\theta-y)^T(X\theta-y) \hspace{15cm} \end{aligned} $$

展开上式可得

J(θ)=12m(θTXTXθ−θTXTy−yTXθ+yTy)

注意到 θTXTy 与 yTXθ 都为标量,实际上是等价的,则:

J(θ)=12m[XTXθ−2θTXTy+yTy]

接下来对$J(\theta )$ 求偏导,根据矩阵的求导法则:

\diffdXTAX\diffdX=(A+AT)X

\diffdXTA\diffdX=A

所以有:

∂J(θ)∂θ=12m(2XTXθ−2XTy)=XTXθ−XTy

令$\frac{\partial J\left( \theta \right)}{\partial \theta }=0$, 则有 $$ \theta ={{\left( {X^{T}}X \right)}^{-1}}{X^{T}}y $$

4.7 不可逆性正规方程(Normal Equation Noninvertibility)

(本部分内容为选讲)

正规方程无法应用于不可逆的矩阵,发生这种问题的概率很小,通常由于

  • 特征之间线性相关

    比如同时包含英寸的尺寸和米为单位的尺寸两个特征,它们是线性相关的

    即 x1=x2∗(3.28)2。

  • 特征数量大于训练集的数量 (m⩽n)。

如果发现 XTX 的结果不可逆,可尝试:

  • 减少多余/重复特征
  • 增加训练集数量
  • 使用正则化(后文)

对于这类不可逆的矩阵,我们称之为奇异矩阵退化矩阵

这种情况下,如果还想使用正规方程法,在Octave中,可以选用 pinv 函数,pinv 区别于 invpinv 函数被称为伪逆函数,在矩阵不可逆的时候,使用这个函数仍可正确地计算出 θ 的值。

Footnotes

  1. 一般来说,当 $n$ 超过 10000 时,对于正规方程而言,特征量较大。 

  2. 梯度下降算法的普适性好,而对于特定的线性回归模型,正规方程是很好的替代品。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaoshun007~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值