连连看
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 41352 Accepted Submission(s): 10220
Problem Description
“连连看”相信很多人都玩过。没玩过也没关系,下面我给大家介绍一下游戏规则:在一个棋盘中,放了很多的棋子。如果某两个相同的棋子,可以通过一条线连起来(这条线不能经过其它棋子),而且线的转折次数不超过两次,那么这两个棋子就可以在棋盘上消去。不好意思,由于我以前没有玩过连连看,咨询了同学的意见,连线不能从外面绕过去的,但事实上这是错的。现在已经酿成大祸,就只能将错就错了,连线不能从外围绕过。
玩家鼠标先后点击两块棋子,试图将他们消去,然后游戏的后台判断这两个方格能不能消去。现在你的任务就是写这个后台程序。
Input
输入数据有多组。每组数据的第一行有两个正整数n,m(0<n<=1000,0<m<1000),分别表示棋盘的行数与列数。在接下来的n行中,每行有m个非负整数描述棋盘的方格分布。0表示这个位置没有棋子,正整数表示棋子的类型。接下来的一行是一个正整数q(0<q<50),表示下面有q次询问。在接下来的q行里,每行有四个正整数x1,y1,x2,y2,表示询问第x1行y1列的棋子与第x2行y2列的棋子能不能消去。n=0,m=0时,输入结束。
注意:询问之间无先后关系,都是针对当前状态的!
Output
每一组输入数据对应一行输出。如果能消去则输出"YES",不能则输出"NO"。
Sample Input
3 4 1 2 3 4 0 0 0 0 4 3 2 1 4 1 1 3 4 1 1 2 4 1 1 3 3 2 1 2 4 3 4 0 1 4 3 0 2 4 1 0 0 0 0 2 1 1 2 4 1 3 2 3 0 0
Sample Output
YES NO NO NO NO YES
题目分析:
从给定起点处向四个方向去搜,看能否在转两个弯内到达终点,且这两个棋子类型相同。
代码:
#include<iostream>
using namespace std;
struct Point{
int x;
int y;
Point(int xx, int yy) { x = xx; y = yy; }
};
int xq, yq, x2, y2;
int n, m, p;
int mapp[1002][1002];
int visit[1002][1002];
int flag = 0;
Point f[4] = { {1,0} ,{0,1}, {-1,0} ,{0,-1} };
void DFS(int x,int y,int d,int c) { //x,y为当前点的坐标,d为当前的方向,c记录有几个弯。
if (flag)return;
if (c > 2)return; //如果到该点要拐三个弯,那就不可能了,返回把。
if (c == 2 && x != x2&&y != y2)//当拐了两个弯后,第二个弯后的第一个点若既不和终点在一行也不在同一列那这个点就肯定不行。
return;
if (x<1 || x>n || y<1 || y>m)return; //防越界
if (mapp[x][y] != 0&&(x!=xq||y!=yq)) { //如果当前点不为0且不是起点,就看当前点是不是终点,并且看拐的弯在2个以内。
if (c<=2&&x == x2&&y == y2&&!flag) {
flag = 1;
cout << "YES" << endl;
}
return;
}
//向四个方向去搜
for (int i = 0; i < 4; i++) {
int tx = x + f[i].x;
int ty = y + f[i].y;
if (!visit[tx][ty]) {
visit[tx][ty] = 1;
if (i == d) {
DFS(tx, ty, d, c);
}
else {
DFS(tx, ty, i, c + 1);
}
visit[tx][ty] = 0;
}
}
}
int main() {
while (cin >> n >> m&&n&&m) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> mapp[i][j];
}
}
cin >> p;
for (int i = 0; i < p; i++) {
memset(visit, 0, sizeof(visit));
flag = 0;
cin >> xq >> yq >> x2 >> y2;
if (mapp[xq][yq] != mapp[x2][y2]) { //如果起点和终点的棋子类型不同就肯定不行
cout << "NO" << endl;
continue;
}
visit[xq][yq] = 1;
for (int j = 0; j < 4; j++) {
DFS(xq, yq, j, 0);
if (flag)break;
}
if (!flag) {
cout << "NO" << endl;
}
}
}
return 0;
}