Codeforces Round #402 (Div. 2) B. Weird Rounding

Polycarp is crazy about round numbers. He especially likes the numbers divisible by 10k.

In the given number of n Polycarp wants to remove the least number of digits to get a number that is divisible by 10k. For example, if k = 3, in the number 30020 it is enough to delete a single digit (2). In this case, the result is 3000 that is divisible by 103 = 1000.

Write a program that prints the minimum number of digits to be deleted from the given integer number n, so that the result is divisible by 10k. The result should not start with the unnecessary leading zero (i.e., zero can start only the number 0, which is required to be written as exactly one digit).

It is guaranteed that the answer exists.

Input

The only line of the input contains two integer numbers n and k (0 ≤ n ≤ 2 000 000 000, 1 ≤ k ≤ 9).

It is guaranteed that the answer exists. All numbers in the input are written in traditional notation of integers, that is, without any extra leading zeros.

Output

Print w — the required minimal number of digits to erase. After removing the appropriate w digits from the number n, the result should have a value that is divisible by 10k. The result can start with digit 0 in the single case (the result is zero and written by exactly the only digit 0).

Examples
Input
30020 3
Output
1
Input
100 9
Output
2
Input
10203049 2
Output
3

Note

In the example 2 you can remove two digits: 1 and any 0. The result is number 0 which is divisible by any number.

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<map>
#include<string.h>
#include<math.h>
using namespace std;
typedef long long ll;
int n,k,a[13];
int pow(int a,int b)
{
    int res=1;
    while(b)
    {
        if(b&1)
            res=res*a;
        b>>=1;
        a=a*a;
    }
    return res;
}
int main()
{
    int i,j,l,f,g,k;
    while(~scanf("%d%d",&n,&k))
    {
        int m=pow(10,k);
        int sum=0;
        if(n%m==0)
            printf("0\n");
        else
        {
            while(n%m!=0)
            {
                g=n%m; f=g; j=0; k=0;
                while(f)
                {
                    l=f%10;
                    a[j++]=l;
                    f=f/10;
                }
                for(i=0; i<j; i++)
                {
                    if(a[i]==0)   k++;
                }
                n=(n-g)/pow(10,j-k);
                if(n==0)
                sum+=(j-1);
                else
                sum+=(j-k);
            }
            printf("%d\n",sum);
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值