图像分类网络
文章平均质量分 59
解决图像分类的一些问题和实现经典网络
晓码bigdata
从2020年11月12号起正式全身心投入到python和tensorflow深度学习框架的学习中,希望在之后的多半年时间里和大家一起快速进步!
展开
-
深度学习技术汇总
1 背景2 基础知识汇总(23条消息) 深度学习基础知识(人工智能)_Java_rich的博客-CSDN博客https://blog.csdn.net/Java_rich/article/details/120701484?utm_medium=distribute.pc_relevant_t0.593797&depth_1-utm_source=distribute.pc_relevant_t0.5937973 深度学习框架4 数据集5 数据预处理6 模型构建6.1 常见模型结构原创 2021-10-12 11:24:04 · 2088 阅读 · 0 评论 -
图像分类网络8——3种方式实现lirs鸢尾花分类
鸢尾花分类1 自定义前向传播和训练2 tf.keras.models.Sequential3 class 方法1 自定义前向传播和训练# 利用鸢尾花数据集,实现前向传播,反向传播,可视化loss曲线import tensorflow as tffrom sklearn import datasetsfrom matplotlib import pyplot as pltimport numpy as np#导入数据集,分为输入特征和标签x_data = datasets.load_iri原创 2021-06-25 11:22:36 · 352 阅读 · 0 评论 -
图像分类网络7——EfficientNet进行垃圾分类(样本不均衡,使用高级技巧)未完成
目录1 EfficientNet1.1 简介1.2 结构1.3 特点2 数据集3 代码实现1 EfficientNet1.1 简介论文地址:https://arxiv.org/pdf/1905.11946.pdf1.2 结构1.3 特点2 数据集3 代码实现原创 2021-04-15 20:26:10 · 453 阅读 · 1 评论 -
图像分类网络6——VGG16识别5分类(ImageDataGenerator和迁移学习)
目录1 VGG161.1 VGG16简介1.2 VGG16结构1.3 VGG16特点2 数据文件3 代码3.1 ImageDataGenerator和VGG16迁移学习3.2 VGG16迁移学习+转移矩阵3.2.1 训练3.2.2 单张图像预测3.2.3 测试获取准确率3.2.4 批量图像预测实现转移矩阵1 VGG161.1 VGG16简介VGG是由Simonyan 和Zisserman在文献《Very Deep Convolutional Networks for Large Scale Image原创 2021-04-14 15:58:32 · 4353 阅读 · 0 评论 -
图像分类网络5——AlexNet实现猫狗大战
目录1 AlexNet简介1.1 结构1.2 六大特点2 猫狗大战数据集3 代码实现1 AlexNet简介AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网络被提出,比如优秀的vgg,GoogLeNet。 这对于传统的机器学习分类算法而言,已经相当的出色。论文地址:http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf1.1 结构这个结构挺难看懂的原创 2021-04-14 11:04:09 · 1278 阅读 · 0 评论 -
图像分类网络4——LeNet-5识别CIFAR100
目录1 LeNet-5(卷积神经网络的开篇之作)1.1 简介1.2 3大特点2 CIFAR100数据集3 代码1 LeNet-5(卷积神经网络的开篇之作)1.1 简介LeNet-5是Y. Lecun(杨丽坤深度学习大佬)1998年提出的,论文地址:https://ieeexplore.ieee.org/document/726791?reload=true&arnumber=726791卷积神经网络的入门结构上面实际上是经过以下7步得到的(1)卷积(2)池化(3)卷积(4)池原创 2021-04-13 17:42:46 · 1619 阅读 · 2 评论 -
图像分类网络3——卷积网络识别手写数字(自定义训练)
跟图像分类2一样,就是中间的class类不一样class CNN(tf.keras.Model): def __init__(self): super().__init__() self.conv1 = tf.keras.layers.Conv2D( filters=32, # 卷积层神经元(卷积核)数目 kernel_size=[5, 5], # 感受野大小 ...原创 2021-04-13 11:44:43 · 109 阅读 · 0 评论 -
图像分类网络2——多层感知机MLP识别手写数字(自定义训练)
MLP实现手写数字识别目的1 数据和数据预处理2 模型构建3 反向传播和训练4 模型测试目的1 数据和数据预处理import tensorflow as tfimport numpy as npclass MNISTLoader(object): """数据加载处理类 """ def __init__(self): """ """ # 1、获取数据 (self.train_data, self.tr原创 2021-04-12 10:58:05 · 2570 阅读 · 0 评论 -
图像分类网络1——感知机
感知机1 简介2 代码实现1 简介要理解神经网络,先解释一种叫做感知机(perceptron)的人工神经元。感知机由科学家Frank Rosenblatt发明于1950至1960年代,他受到了来自Warren McCulloch 和Walter Pitts的更早工作的启发。注:我们通常使用其它种类的人工神经元模型,主要使用的是一种叫做sigmoid神经元(sigmoid neuron)的神经元模型。2 代码实现...原创 2021-03-31 10:33:13 · 221 阅读 · 0 评论 -
图像分类网络综述
这里写目录标题1原理2数据集3 常见网络4评价指标4.1准确率4.2top5错误率1原理2数据集3 常见网络4评价指标4.1准确率4.2top5错误率原创 2020-12-18 11:14:33 · 5954 阅读 · 0 评论