机器学习
晓码bigdata
从2020年11月12号起正式全身心投入到python和tensorflow深度学习框架的学习中,希望在之后的多半年时间里和大家一起快速进步!
展开
-
机器学习中的特征选择与处理
机器学习的特征选择与处理,很全https://www.cnblogs.com/wkslearner/p/8933685.html原创 2021-09-07 11:16:48 · 115 阅读 · 0 评论 -
机器学习综述
机器学习1 概述1.1 任务2 算法分类2.1 评价指标3 流程4 数据集参考资料:这个参考文献特别特别好https://zhuanlan.zhihu.com/p/46320419一个故事说明什么是机器学习https://www.cnblogs.com/subconscious/p/4107357.html这个是数据分析的所有知识点,和机器学习一样,这两者本身就应该是一样的,数据不应该单单是数据https://blog.csdn.net/xiaotiig/article/details/1128原创 2021-07-28 12:15:05 · 328 阅读 · 0 评论 -
机器学习解决任务的流程步骤
和数据分析一样1、确定目的2、数据获取,3、数据预处理和数据探索(特征工程)4、模型建立(选择模型)5、模型训练6、测试评估(评价指标)7、优化8、保存应用和撰写报告很好的参考资料:流程:【1】https://zhuanlan.zhihu.com/p/184673895【2】https://www.cnblogs.com/helongBlog/p/11612104.html【3】https://blog.csdn.net/qq_27567859/article/details/7原创 2021-07-28 11:47:26 · 1113 阅读 · 0 评论 -
算法系列1——Kmeans聚类
K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的)K-means聚类1 概述2 核心思想3 算法步骤4 代码实现1 概述K-means算法是集简单和经典于一身的基于距离的聚类算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2 核心思想通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。k个聚类具有以下特点:各聚类本身尽可能原创 2021-01-17 19:52:18 · 392 阅读 · 0 评论