Spark实时(二):StructuredStreaming编程模型

62 篇文章 63 订阅

文章目录

StructuredStreaming编程模型

一、基础语义

二、事件时间和延迟数据

三、​​​​​​​容错语义


StructuredStreaming编程模型

一、基础语义

Structured Streaming处理实时数据思想是将实时数据看成一张没有边界的表,数据源源不断的追加到这张表中,这可以让我们能像处理批数据一样处理实时数据。如下图所示,每条实时数据到来之后都对应“无界表”中的一条数据追加到表中。

以WordCount为例,Spark会针对每次增量的数据进行计算,将结果输出出来,如下图所示: 

数据分析职业是一个多金的职业,数据分析职位是一个金饭碗的职位,前景美好,但是要全面掌握大数据分析技术,非常困难,大部分学员的痛点是不能快速找到入门要点,精准快速上手。本课程采用项目驱动的方式,以Spark3和Clickhouse技术为突破口,带领学员快速入门Spark3+Clickhouse数据分析,促使学员成为一名高效且优秀的大数据分析人才。学员通过本课程的学习,不仅可以掌握使用Python3进行Spark3数据分析,还会掌握利用Scala/java进行Spark数据分析,多语言并进,力求全面掌握;另外通过项目驱动,掌握Spark框架的精髓,教导Spark源码查看的技巧;会学到Spark性能优化的核心要点,成为企业急缺的数据分析人才;更会通过Clickhouse和Spark搭建OLAP引擎,使学员对大数据生态圈有一个更加全面的认识和能力的综合提升。真实的数据分析项目,学完即可拿来作为自己的项目经验,增加面试谈薪筹码。课程涉及内容:Ø  Spark内核原理(RDD、DataFrame、Dataset、Structed Stream、SparkML、SparkSQL)Ø  Spark离线数据分析(千万简历数据分析、雪花模型离线数仓构建)Ø  Spark特征处理及模型预测Ø  Spark实时数据分析(Structed Stream)原理及实战Ø  Spark+Hive构建离线数据仓库(数仓概念ODS/DWD/DWS/ADS)Ø  Clickhouse核心原理及实战Ø  Clickhouse engine详解Ø  Spark向Clickhouse导入简历数据,进行数据聚合分析Ø  catboost训练房价预测机器学习模型Ø  基于Clickhouse构建机器学习模型利用SQL进行房价预测Ø  Clickhouse集群监控,Nginx反向代理Grafana+Prometheus+Clickhouse+node_exporterØ  Spark性能优化Ø  Spark工程师面试宝典       课程组件:集群监控:福利:本课程凡是消费满359的学员,一律送出价值109元的实体书籍.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lansonli

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值